EXPERIMENTAL STUDIES USING NON - NEWTONIAN NANOFLUID OF SiO2-WATER-EUTECTIC SOLVENT IN A PLATE HEAT EXCHANGER

Original scientific paper

Authors

DOI:

https://doi.org/10.2298/CICEQ250707001M

Keywords:

base fluid, eutectic solvent, heat transfer, non-Newtonian nanofluid, plate heat exchanger, SiO2.

Abstract

The plate heat exchanger is one of the smallest and most efficient heat exchangers on the market. This experiment aims to assess the performance of eutectic solvent-water as a base fluid in a plate heat exchanger. For this study, silicon oxide (SiO2) nanoparticles are synthesized from sugar bagasse and rice husk, using the sol-gel method. SiO2 nanoparticles were used in various ratios (0.15 vol.%, 0.3 vol.%, 0.45 vol.%, 0.6 vol.%, and 0.75 vol.%) in a base fluid
(15 vol.% eutectic solvent and 85 vol.% water) to prepare a nanofluid. At three different temperatures, such as 323 and 343 K, with varying flow rates (2-8 L/min) and varying nanoparticle concentrations (0.15 % to 0.75 %), heat transfer studies were performed, and the results are presented. There was a notable enhancement in the overall heat transfer coefficient by the combination of SiO2 nanoparticles and an eutectic solvent-water-based fluid. It was noted that utilizing the SiO2/eutectic solvent-water nanofluid could significantly reduce the temperature gradient in the heat exchanger and improve its performance. The maximum overall heat transfer coefficient noted was 3162.5 W/m²K at 0.6 % volume fraction of nanoparticles, with a flow rate of 8 L/min at a temperature of 343 K.

References

[1] G.A. Seisenbaeva, L.M.A. Ali, A. Vardanyan, M. Gary-Bobo, T.M. Budnyak, V.G. Kessler, J.O. Durand, J. Hazard. Mater. 406 (2021)124698.https://doi.org/10.1016/j.jhazmat.2020.124698.

[2] L. Tang, J. Cheng, Nano Today 8 (2013) 290–312.https://doi.org/10.1016/j.nantod.2013.04.007.

[3] S.H. Javed, U. Aslam, M. Kazmi, M. Rustam, S. Riaz, Z. Munir, Pol. J. Chem. Technol. 17 (2015) 47–51. https://doi.org/10.1515/pjct-2015-0049.

[4] B. Rakesh, T. Chitdeshwari, S. Maragatham, D.J.S. Sharmila, A. Senthil, N. Chitra, Dig. J. Nanomater. Biostruct. 19 (2024) 605–618. https://doi.org/10.1016/j.stress.2024.100672

[5] H.B. Dizaji, T. Zeng, I. Hartmann, D. Enke, T. Schliermann, V. Lenz, M. Bidabadi, Appl. Sci. (Switz.) 9 (2019)4939. https://doi.org/10.3390/su14094939.

[6] S. Prabha, D. Durgalakshmi, S. Rajendran, E. Lichtfouse, Environ. Chem. Lett. 19 (2021) 1667–1691. https://doi.org/10.1007/s10311-020-01123-5.

[7] K.A.S. Usman, J.W. Maina, S. Seyedin, M.T. Conato, L.M. Payawan, L.F. Dumée, J.M. Razal, NPG Asia Mater. 12 (2020) 58. https://www.nature.com/articles/s41427-020-00240-5.

[8] I.A. Rahman, V. Padavettan, J. Nanomater. (2012)132424. http://doi.org/10.1155/2012/132424.

[9] A.B.D. Nandiyanto, T. Rahman, M.A. Fadhlulloh, A.G. Abdullah, I. Hamidah, B. Mulyanti, IOP Conf. Ser.: Mater. Sci. Eng. 128 (2016) 012040. https://doi.org/10.1088/1757-899X/128/1/012040.

[10] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318. https://doi.org/10.2298/CICEQ170720003M.

[11] F. Garoosi, F. Hoseininejad, M.M. Rashidi, Appl. Therm. Eng. 105 (2016) 436–455. https://doi.org/10.1016/j.applthermaleng.2016.03.01.

[12] A.E. Kabeel, T. Abou El Maaty, Y. el Samadony, Appl. Therm. Eng. 52 (2013) 221–229. https://doi.org/10.1016/j.applthermaleng.2012.11.027

[13] J. Albadr, S. Tayal, M. Alasadi, Case Stud. Therm. Eng. 1 (2013) 38–44. https://doi.org/10.1016/j.csite.2013.08.004

[14] N. Kumar, S.S. Sonawane, Int. Commun. Heat Mass Transfer 76 (2016) 98–107. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.028.

[15] L. Zhang, A. Zhang, Y. Jing, P. Qu, Z. Wu, J. Phys. Chem. C 125 (2021) 13590–13600. https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c02014.

[16] M. Sheikholeslami, S.A. Shehzad, Z. Li, Int. J. Heat Mass Transfer 125 (2018) 375–386. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.076.

[17] Y. Guo, T. Zhang, D. Zhang, Q. Wang, Int. J. Heat Mass Transfer 117 (2018) 280–286. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.091.

[18] H. Xie, Z. Zhao, J. Zhao, H. Gao, Chin. J. Chem. Eng. 24 (2016) 331–338. https://doi.org/10.1016/j.cjche.2015.11.024.

[19] P. Bose, D. Deb, S. Bhattacharya, J. Power Sources 406 (2018) 176–184. https://doi.org/10.1016/j.jpowsour.2018.10.050.

[20] B. Tang, K.H. Row, Monatsh. Chem. 144 (2013) 1427–1454. https://doi.org/10.1007/s00706-013-1050-3

[21] T.H. Ibrahim, M.A. Sabri, N.A. Jabbar, P. Nancarrow, F.S. Mjalli, I. AlNashef, Molecules 25 (2020). https://doi.org/10.3390/molecules25173816.

[22] V. Agieienko, R. Buchner, J. Chem. Eng. Data 66 (2021) 780–792. https://doi.org/10.1021/je800468h.

[23] A.T. Celebi, T.J.H. Vlugt, O.A. Moultos, Mol. Phys. 119 (2021). https://doi.org/10.1080/00268976.2021.1876263.

[24] W. Shi, X. Chen, XWang, J. Mol. Liq. 395 (2024) 780–792. https://doi.org/10.1016/j.molliq.2023.123852

[25] C. Liu, Y. Yan, W. Sun, X. Shi, N. Shi, Y. Huo, J. Zhao, Z. Said, M. Sharifpur, J. Mol. Liq. 356 (2022) p.119020. https://doi.org/10.1016/j.molliq.2022.119020

[26] X. Chen, J. Jiang, F. Yan, S. Tian, K. Li, RSC Adv. 4 (2014) 8703–8710. https://doi.org/10.1039/C3RA47018K.

[27] I. Kumar, S.R. Rao, S.P. DilliBabu, K.S. Reddy, P.N. Reddy, M. Alam. S. Halder, H.A. Kumar, AIP Conf. Proc. 3267 (2025) p. 020302. https://doi.org/10.1063/5.0264786

[28] B. Vijayakumar, N. Ahalya, V. Venkatesan, J. Kamalakannan, Shubhajit Halder, Kumar Pratyush, AIP Conf. Proc. 69 (2022) 1005-1009. https://doi.org/10.1016/j.matpr.2022.07.462

[29] E. Rafiee, S. Shahebrahimi, M. Feyzi, M. Shaterzadeh, Int. Nano Lett. 2 (2012) 2–8. https://doi.org/10.1186/2228-5326-2-29.

[30] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15-20. https://doi.org/10.2298/CICEQ191220020P.

[31] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177-187. https://doi.org/10.2298/CICEQ200504036P.

[32] D. Wenzel, A. Górak, Chem. Eng. J. (Amsterdam, Neth.) 345(2018) 492-506. https://doi.org/10.1016/j.cej.2018.03.109

Published

17.02.2026

Issue

Section

Article

How to Cite

EXPERIMENTAL STUDIES USING NON - NEWTONIAN NANOFLUID OF SiO2-WATER-EUTECTIC SOLVENT IN A PLATE HEAT EXCHANGER: Original scientific paper. (2026). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250707001M

Similar Articles

11-20 of 76

You may also start an advanced similarity search for this article.