EXPERIMENTAL STUDIES USING NON - NEWTONIAN NANOFLUID OF SiO2-WATER-EUTECTIC SOLVENT IN A PLATE HEAT EXCHANGER
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ250707001MKeywords:
base fluid, eutectic solvent, heat transfer, non-Newtonian nanofluid, plate heat exchanger, SiO2.Abstract
The plate heat exchanger is one of the smallest and most efficient heat exchangers on the market. This experiment aims to assess the performance of eutectic solvent-water as a base fluid in a plate heat exchanger. For this study, silicon oxide (SiO2) nanoparticles are synthesized from sugar bagasse and rice husk, using the sol-gel method. SiO2 nanoparticles were used in various ratios (0.15 vol.%, 0.3 vol.%, 0.45 vol.%, 0.6 vol.%, and 0.75 vol.%) in a base fluid
(15 vol.% eutectic solvent and 85 vol.% water) to prepare a nanofluid. At three different temperatures, such as 323 and 343 K, with varying flow rates (2-8 L/min) and varying nanoparticle concentrations (0.15 % to 0.75 %), heat transfer studies were performed, and the results are presented. There was a notable enhancement in the overall heat transfer coefficient by the combination of SiO2 nanoparticles and an eutectic solvent-water-based fluid. It was noted that utilizing the SiO2/eutectic solvent-water nanofluid could significantly reduce the temperature gradient in the heat exchanger and improve its performance. The maximum overall heat transfer coefficient noted was 3162.5 W/m²K at 0.6 % volume fraction of nanoparticles, with a flow rate of 8 L/min at a temperature of 343 K.
References
[1] G.A. Seisenbaeva, L.M.A. Ali, A. Vardanyan, M. Gary-Bobo, T.M. Budnyak, V.G. Kessler, J.O. Durand, J. Hazard. Mater. 406 (2021)124698.https://doi.org/10.1016/j.jhazmat.2020.124698.
[2] L. Tang, J. Cheng, Nano Today 8 (2013) 290–312.https://doi.org/10.1016/j.nantod.2013.04.007.
[3] S.H. Javed, U. Aslam, M. Kazmi, M. Rustam, S. Riaz, Z. Munir, Pol. J. Chem. Technol. 17 (2015) 47–51. https://doi.org/10.1515/pjct-2015-0049.
[4] B. Rakesh, T. Chitdeshwari, S. Maragatham, D.J.S. Sharmila, A. Senthil, N. Chitra, Dig. J. Nanomater. Biostruct. 19 (2024) 605–618. https://doi.org/10.1016/j.stress.2024.100672
[5] H.B. Dizaji, T. Zeng, I. Hartmann, D. Enke, T. Schliermann, V. Lenz, M. Bidabadi, Appl. Sci. (Switz.) 9 (2019)4939. https://doi.org/10.3390/su14094939.
[6] S. Prabha, D. Durgalakshmi, S. Rajendran, E. Lichtfouse, Environ. Chem. Lett. 19 (2021) 1667–1691. https://doi.org/10.1007/s10311-020-01123-5.
[7] K.A.S. Usman, J.W. Maina, S. Seyedin, M.T. Conato, L.M. Payawan, L.F. Dumée, J.M. Razal, NPG Asia Mater. 12 (2020) 58. https://www.nature.com/articles/s41427-020-00240-5.
[8] I.A. Rahman, V. Padavettan, J. Nanomater. (2012)132424. http://doi.org/10.1155/2012/132424.
[9] A.B.D. Nandiyanto, T. Rahman, M.A. Fadhlulloh, A.G. Abdullah, I. Hamidah, B. Mulyanti, IOP Conf. Ser.: Mater. Sci. Eng. 128 (2016) 012040. https://doi.org/10.1088/1757-899X/128/1/012040.
[10] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318. https://doi.org/10.2298/CICEQ170720003M.
[11] F. Garoosi, F. Hoseininejad, M.M. Rashidi, Appl. Therm. Eng. 105 (2016) 436–455. https://doi.org/10.1016/j.applthermaleng.2016.03.01.
[12] A.E. Kabeel, T. Abou El Maaty, Y. el Samadony, Appl. Therm. Eng. 52 (2013) 221–229. https://doi.org/10.1016/j.applthermaleng.2012.11.027
[13] J. Albadr, S. Tayal, M. Alasadi, Case Stud. Therm. Eng. 1 (2013) 38–44. https://doi.org/10.1016/j.csite.2013.08.004
[14] N. Kumar, S.S. Sonawane, Int. Commun. Heat Mass Transfer 76 (2016) 98–107. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.028.
[15] L. Zhang, A. Zhang, Y. Jing, P. Qu, Z. Wu, J. Phys. Chem. C 125 (2021) 13590–13600. https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c02014.
[16] M. Sheikholeslami, S.A. Shehzad, Z. Li, Int. J. Heat Mass Transfer 125 (2018) 375–386. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.076.
[17] Y. Guo, T. Zhang, D. Zhang, Q. Wang, Int. J. Heat Mass Transfer 117 (2018) 280–286. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.091.
[18] H. Xie, Z. Zhao, J. Zhao, H. Gao, Chin. J. Chem. Eng. 24 (2016) 331–338. https://doi.org/10.1016/j.cjche.2015.11.024.
[19] P. Bose, D. Deb, S. Bhattacharya, J. Power Sources 406 (2018) 176–184. https://doi.org/10.1016/j.jpowsour.2018.10.050.
[20] B. Tang, K.H. Row, Monatsh. Chem. 144 (2013) 1427–1454. https://doi.org/10.1007/s00706-013-1050-3
[21] T.H. Ibrahim, M.A. Sabri, N.A. Jabbar, P. Nancarrow, F.S. Mjalli, I. AlNashef, Molecules 25 (2020). https://doi.org/10.3390/molecules25173816.
[22] V. Agieienko, R. Buchner, J. Chem. Eng. Data 66 (2021) 780–792. https://doi.org/10.1021/je800468h.
[23] A.T. Celebi, T.J.H. Vlugt, O.A. Moultos, Mol. Phys. 119 (2021). https://doi.org/10.1080/00268976.2021.1876263.
[24] W. Shi, X. Chen, XWang, J. Mol. Liq. 395 (2024) 780–792. https://doi.org/10.1016/j.molliq.2023.123852
[25] C. Liu, Y. Yan, W. Sun, X. Shi, N. Shi, Y. Huo, J. Zhao, Z. Said, M. Sharifpur, J. Mol. Liq. 356 (2022) p.119020. https://doi.org/10.1016/j.molliq.2022.119020
[26] X. Chen, J. Jiang, F. Yan, S. Tian, K. Li, RSC Adv. 4 (2014) 8703–8710. https://doi.org/10.1039/C3RA47018K.
[27] I. Kumar, S.R. Rao, S.P. DilliBabu, K.S. Reddy, P.N. Reddy, M. Alam. S. Halder, H.A. Kumar, AIP Conf. Proc. 3267 (2025) p. 020302. https://doi.org/10.1063/5.0264786
[28] B. Vijayakumar, N. Ahalya, V. Venkatesan, J. Kamalakannan, Shubhajit Halder, Kumar Pratyush, AIP Conf. Proc. 69 (2022) 1005-1009. https://doi.org/10.1016/j.matpr.2022.07.462
[29] E. Rafiee, S. Shahebrahimi, M. Feyzi, M. Shaterzadeh, Int. Nano Lett. 2 (2012) 2–8. https://doi.org/10.1186/2228-5326-2-29.
[30] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15-20. https://doi.org/10.2298/CICEQ191220020P.
[31] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177-187. https://doi.org/10.2298/CICEQ200504036P.
[32] D. Wenzel, A. Górak, Chem. Eng. J. (Amsterdam, Neth.) 345(2018) 492-506. https://doi.org/10.1016/j.cej.2018.03.109
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Srinivasan Periasamy Manikandan , Jayabalan Jayabharathi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.



