MHD Williamson fluid flow on an extending sheet with thermophoresis and chemical reaction Original scientific paper

Main Article Content

Golden Stepha Nallathambi
https://orcid.org/0000-0001-5382-8598
Bharathi Gowri Sasi Kumar
Guvva Swathy

Abstract

This research investigates the steady, two-dimensional, incompressible flow of a pseudoplastic Williamson fluid subjected to a linearly stretched sheet. The study incorporates the effects of magnetic fields, chemical reactions, and thermophoresis on fluid behavior. By applying boundary layer techniques and similarity transformations, the governing equations are simplified for numerical analysis. The MATLAB bvp4c solver is employed to solve the reduced equations. The obtained results are visually represented and thoroughly discussed to comprehend the model's physical characteristics. The investigation highlights the magnetic field's influence, chemical reaction, and impact of thermophoresis particle deposition on the flow behavior of Williamson fluid over the extended sheet. Findings: Moreover, significant roles are found for chemical reactions and thermophoresis parameters in determining the fluid concentration near the boundary layer. It is observed that an increase in the chemical reactions and thermophoresis parameters results in a reduced thickness of the fluid concentration near the boundary layer. Notably, an increase in Schmidt value also diminished the thickness of the fluid concentration close to the boundary layer. MHD parameter significantly influences the fluid's velocity and temperature near the surface. It has been noted that an increase in the MHD parameter decreases the fluid’s velocity and increases the temperature near the surface. The impact of skin friction coefficient and Nusselt number and the impact of mass transfer coefficient on Williamson fluid will be discussed. The findings acquired are examined in relation to existing research and the correlation is provide as table.

Article Details

How to Cite
Nallathambi, G. S. ., Sasi Kumar, B. G. ., & Swathy, G. . (2024). MHD Williamson fluid flow on an extending sheet with thermophoresis and chemical reaction: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ230928005N
Section
Articles

References

R.V. Williamson, Ind. Eng. Chem. Res. 21(1929) 1108-1111. https://doi.org/10.1021/ie50239a035

B.C. Sakiadis, AIChe J. 7 (1961) 26–28. https://doi.org/10.1002/aic.690070108

F.K. Tsou, E.M. Sparrow, R.J. Goldstein, Int. J. Heat Mass Transfer 10 (1967) 219–235. https://doi.org/10.1016/0017-9310(67)90100-7

L.E. Erickson, L.T. Fan., V.G. Fox, Ind. Eng. Chem. 5 (1966) 19–25. https://doi.org/10.1021/i160017a004

S. Nadeem, S.T. Hussain, C. LeeBraz. J. Chem. Eng. 30(3) (2013) 619–625. https://doi.org/10.1590/S0104-66322013000300019

T. Hayat, A. Shafiq, A. Alsaedi, Alexandria Eng. J. 55(3) (2016) 2229– 2240. https://doi.org/10.1016/j.aej.2016.06.004

H.M. Shawky, N.T. Eldabe, K.A. Kamel, E.A. Abd-Aziz, Microsyst. Technol. 25(4) (2018) 1155– 1169. https://doi.org/10.1007/s00542-018-4081-1

S. Nadeem, S.T. Hussain, Appl. Nanosci. 4(8) (2014) 1005–1012. https://doi.org/10.1007/s13204-013-0282-1

S. Nadeem, S.T. Hussain, J. Appl. Fluid Mech. 9 (2) (2016) 729–739. https://doi.org/10.18869/acadpub.jafm.68.225.21487

T. Kebede, E. Haile, G. Awgichew, T. Waleign, J. Appl. Math. 2020 (2020) 1–13. https://doi.org/10.1155/2020/1890972.

I.C. Liu, Int. Commun. Heat Mass Transfer 32 (8) (2005) 1075–1084. https://doi.org/10.1016/j.icheatmasstransfer.2005.02.003

M.A.A. Hammad, M. Ferdows, Appl. Math. Mech. 33 (7) (2012) 923–930. https://doi.org/10.1007/s10483-012-1595-7

F.M. Ali, R. Nazar, N.M. Arifin, I. Pop, Appl. Math. Mech. 32 (4) (2011) 409–418. https://doi.org/10.1007/s10483-011-1426-6

V. Kumaran, G. Ramanaiah, Acta Mech. 116 (1-4) (1996) 229–233. https://doi.org/10.1007/BF01171433

M.E. Ali, Int. J. Heat Mass Transfer 16 (1995) 280–290. https://doi.org/10.1016/0142-727X(95)00001-7

E.M.A. Elbashbeshy, Arch. Mech. 53 (6) (2001) 643–651. https://am.ippt.pan.pl/am/article/viewFile/v53p643/pdf

E. Sanjayanand, S.K. Khan, Int. J. Therm. Sci. 45 (2006) 819–828. https://doi.org/10.1016/j.ijthermalsci.2005.11.002

E. Magyari, B. Keller, J. Phys. D: Appl. Phys. 32 (1999) 577–585. http://doi.org/10.1007/s002310000126

S. Nadeem, S. Zaheer, T. Fang, Numer. Algorithms 57 (2011) 187–205. http://dx.doi.org/10.1007/s11075-010-9423-8

E.Sanjayanand, and S. K. Khan, Intl. J. of Thermal Sciences, 45, (2006) 819–828. https://doi.org/10.1016/j.ijthermalsci.2005.11.002

E. Magyari, and B. Keller, J. of Physics D: Appl. Physics, 32, (1999) 577–585. http://dx.doi.org/10.1088/0022-3727/32/5/012

S. Nadeem, S. Zaheer, and T. Fang, Numerical Algorithms, 57, (2011) 187–205. http://dx.doi.org/10.1007/s11075-010-9423-8

S. Nadeem, and C. Lee, Nanoscale Research Letters, 7, (2012) 94 https://doi.org/10.1186/1556-276X-7-94

Muhammad Shoaib Arif, Kamaleldin Abodayeh, and Yasir Nawaz, Axioms, 12(5), (2023) 460, https://doi.org/10.3390/axioms12050460

Yasir Nawaz, Muhammad Shoaib Arif, and Kamaleldin Abodayeh, An explicit-implicit numerical scheme for time fractional boundary layer flows. Intl. J. of for Numerical Methods in Fluids , 94 (7), (2022) 920-940. https://doi.org/10.1002/fld.5078

P. Loganathan, and N. Golden Stepha, Journal of Applied Fluid Mechanics, 6 (4), (2013) 581-588. 10.36884/JAFM.6.04.21276

Mohammed Ismail and David Maxim Gururaj, 50 (4).(2021), 4019- 4038 https://doi.org/10.1002/htj.22062

Mohammed Ismail and David Maxim Gururaj, Journal of Nanofluids, 12 ( 3), ( 2023), 809-818(10). https://doi.org/10.1166/jon.2023.1962

Mohammed Ismail and David Maxim Gururaj, Numerical Heat Transfer, Part B: Fundamentals, (2023), 10.1080/10407790.2023.2257381

P. Loganathan, and N. Golden Stepha, Asia-Pac. J. Chem. Eng. 8 (6),(2013), 870 – 879 https://doi.org/10.1002/apj.1732

V.K. Garg, S. Jayaraj. Int. J. Heat Mass Transfer, 1998; 31, 875–890. https://doi.org/10.1016/0017-9310(88)90144-5

Najeeb Alam Khan and Hassam Khan, Nonlinear Engineering, 3(2), (2014)107–115. https://doi.org/10.1515/nleng-2014-0002

Hussein Maaitah, Abdullah N. Olimat, Omar Quran, Hamzeh M. Duwairi, International Journal of Thermofluids, 19 (2023). https://doi.org/10.1016/j.ijft.2023.100361

Ahmed M. Megahed, International Journal of Modern Physics C, 31(1), (2020) DOI: 10.1142/S0129183120500199

Erickson, L. E, Fan, L. T and Fox, V. G. Industrial & Engineering Chemistry Fundamentals, 5(1), (1966), 19–25. https://doi.org/10.1021/i160017a004

Similar Articles

You may also start an advanced similarity search for this article.