IMPACT OF CHEMICAL REACTION, VISCOUS DISSIPATION, AND THERMAL RADIATION ON MHD FLOW PAST AN OSCILLATING PLATE Original scientific paper

Main Article Content

Rengasamy Rajaraman
https://orcid.org/0000-0003-2308-6233
Rajamanickam Muthucumaraswamy
https://orcid.org/0000-0003-0955-8492

Abstract

This study analyzes the consequences of first-order chemical reactions, radiation, and viscous dissipation on the unsteady magnetohydrodynamic natural convective flow of a viscous incompressible fluid over a vertically positioned semi-boundless oscillating plate with uniform mass diffusion and temperature. An implicit finite-difference technique is employed to solve a set of dimensionless, coupled, nonlinear partial differential equations. The numerical results for fluid velocity, concentration, and temperature at the plate under different dimensionless parameters are graphically displayed. Due to first-order homogeneous chemical reactions, it has been discovered that the velocity rises at the time of a generative reaction and drops during a destructive reaction. A decline in velocity is observed with an increase in the phase angle, radiation parameter, and chemical reaction parameter. Further, it has been revealed that plate oscillation, radiation, chemical reactions, and the magnetic field significantly influence the flow behavior.

Article Details

How to Cite
Rajaraman, R. ., & Muthucumaraswamy, R. . (2024). IMPACT OF CHEMICAL REACTION, VISCOUS DISSIPATION, AND THERMAL RADIATION ON MHD FLOW PAST AN OSCILLATING PLATE: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(3), 223–230. https://doi.org/10.2298/CICEQ230526025R
Section
Articles

References

E.M. Sparrow, R.D. Cess, Int. J. Heat Mass Transfer 3 (1961) 267—274. https://doi.org/10.1016/0017-9310(61)90042-4.

A.J. Chamkha, Int. J Eng. Sci. 42 (2004) 217—230. https://doi.org/10.1016/S0020-7225(03)00285-4.

A. Raptis, Therm. Sci. 15 (2011) 849—857.

https://doi.org/10.2298/TSCI101208032R.

A. Hussanan, M.I. Anwar, F. Ali, I. Khan, S. Shafie, Heat Transf. Res. 45 (2014) 119—135. http://doi.org/10.1615/HeatTransRes.2013006385.

U.N. Das, R. Deka, V.M. Soundalgekar, Forsch. Ingenieurwes. 60 (1994) 284—287. https://doi.org/10.1007/bf02601318.

R. Muthucumaraswamy, T. Kulaivel, Forsch. Ingenieurwes. 68 (2003) 101—104. https://doi.org/10.1007/s10010-003-0112-9.

R. Muthucumaraswamy, Chem. Ind. Chem. Eng. Q. 16 (2010) 167—173. https://doi.org/10.2298/CICEQ091231024M.

A.R. Vijayalakshmi, M. Selvajayanthi, Int. J. Appl. Mech. Eng. 19 (2014) 181—193. https://doi.org/10.2478/ijame-2014-0013.

F.S. Ibrahim, A.M. Elaiw, A.A. Bakr. Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 1056—1066. https://doi.org/10.1016/j.cnsns.2006.09.007.

K. Manivannan, R. Muthucumaraswamy, V. Thangaraj. Therm. Sci. 13 (2009) 155—162. https://doi.org/10.2298/TSCI0902155M.

S. Ahmed, J. Zueco, L.M. Lopez-Ochoa. Chem. Eng. Commun. 20 (2013) 419—436. https://doi.org/10.1080/00986445.2013.775645.

C. Santhana Lakshmi, R. Muthucumaraswamy. J. Chem. Pharm. Sci. 8 (2015) 700—705. http://www.jchps.com/issues/Volume%208_Issue%204/jchps%208(4)%2019%20C.%20Santhana%20Lakshmi.pdf.

Y. Hari Krishna, M.V. Ramana Murthy, N.L. Bhikshu, G. Venkata Ramana. Int. J. Chem. Sci. 15 (2017) 1—12. https://www.tsijournals.com/abstract/effects-of-radiation-and-chemical-reaction-on-mhd-flow-past-an-oscillating-inclined-porous-plate-with-variable-temperatu-13297.html.

V. Srihari Babu, K. Jaya Rami Reddy, Global J. Pure Appl. Math. 13 (2017) 5341—5358. https://www.ripublication.com/gjpam17/gjpamv13n9_74.pdf.

S. Matta, B.S. Malga, L. Appidi, P. Kumar, Indian J. Sci. Technol. 14 (2021) 707—717. https://doi.org/10.17485/IJST/v14i8.20.

A. Shehu, I.D. Yale, A.M.T. Uchiri, World J. Adv. Eng. Technol. Sci. 6 (2022) 81—87. https://doi.org/10.30574/wjaets.2022.6.2.0084.

R.L. Mahajan, B. Gebhart, Int. J. Heat Mass Transfer 32 (1989) 1380—1382. https://doi.org/10.1016/0017-9310(89)90038-0.

N. Kishan, P. Amrutha, J. Nav. Archit. Mar. Eng. 7 (2010) 11—18. https://doi.org/10.3329/jname.v7i1.3254.

J.A. Rao, S. Shivaiah, Appl. Math. Mech. (Engl. Transl.) 32 (2011) 1065—1078. https://doi.org/10.1007/s10483-011-1481-6.

K.V.B. Rajakumar, K.S. Balamurugan, Ch.V. Ramana Murthy, M. Umasenkara Reddy, Global J. Pure Appl. Math. 13 (2017) 8297—8322. https://www.ripublication.com/gjpam17/gjpamv13n12_11.pdf.

S. Kar, N. Senapati, B.K. Swain, Int. J. Adv. Appl. Sci. 8 (2019) 83—94. https://doi.org/10.11591/ijaas.v8.i1.pp83-94.

N.N. Reddy, V. Srinivasa Rao, B. Ravindra Reddy, Case Stud. Therm. Eng. 25 (2021) 100879. https://doi.org/10.1016/j.csite.2021.100879.

P.M. Kishore, N.V.R.V. Prasada Rao, S. Vijaya Kumar Verma, S. Venkata Ramana, Int. J. Math. Arch. 4 (2013) 74—86. http://www.ijma.info/index.php/ijma/article/view/1854.

C.S. Balla, K. Naikoti, Alexandria Eng. J. 54 (2015) 661—671. https://doi.org/10.1016/j.aej.2015.04.013.

B. Zigta, Int. J. Appl. Mech. Eng. 23 (2018) 787—801. https://doi.org/10.2478/ijame-2018-0043.

B. Prabhakar Reddy, Int. J. Appl. Mech. Eng. 24 (2019) 343—358. https://doi.org/10.2478/ijame-2019-0022.

T.R.K.D. Vara Prasad, T. Linga Raju, K.V.B. Rajakumar, Heat Transfer 52 (2022) 1254—1274. https://doi.org/10.1002/htj.22739.