EXPERIMENTAL HEAT TRANSFER STUDIES ON COPPER NANOFLUIDS IN A PLATE HEAT EXCHANGER

Main Article Content

SRINIVASAN PERIASAMY MANIKANDAN
RAJOO BASKAR

Abstract

The objective of the present work is to study the influence of copper nano­particle concentration on heat transfer performance of a mixed base fluid. In the present study, the performance of copper nanoparticles in ethylene glycol (eg) + propylene glycol (pg) + water (W) base fluid was analyzed in the chev­ron-type plate heat exchanger. The sol-gel method was used to prepare cop­per nanoparticles (100 nm), dispersed in two different mixed base fluids of volume fractions 5%EG + 5%PG + 90%W and 15%EG + 5%PG + 80%W. Experiments were performed by varying the nanoparticle concentration from 0.2 to 1.0 vol.%. Three different hot fluid inlet temperatures were used (55, 65 and 75 °C). It is revealed from the study that the rate of heat transfer increased significantly with the mixed base fluid. Result shows that at 75 °C, 9 and 14.9% enhancement in the Nusselt number is obtained for 5%EG + 5%PG + 90%W and 15%EG + 5%PG + 80%W base fluid, respectively, for the nanoparticle concentration of 1%.

Article Details

How to Cite
MANIKANDAN, S. P. ., & BASKAR, R. . (2021). EXPERIMENTAL HEAT TRANSFER STUDIES ON COPPER NANOFLUIDS IN A PLATE HEAT EXCHANGER. Chemical Industry & Chemical Engineering Quarterly, 27(1), 15–20. https://doi.org/10.2298/CICEQ191220020P
Section
Articles

References

S.U.S. Choi, S. Lee, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280-289

S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567-574

J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, App. Phys. Lett. 78 (2001) 718-720

Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21 (2000) 58-64

Y. Xuan, Q. Li, J. Heat Transfer 125 (2003) 151-155

J. Garg, B. Poudel, M. Chiemsa, J.B. Gordan, J.J. Ma, J.B. Wang, J. App. Phys. 103 (2008) 074301-074306

Q. Li, Y. Xuan, Sci. China, Ser. E: Technol. Sci. 45 (2002) 408-416

A. Ghadimi, R. Saidur, H.S.C Metselaar, Int. J. Heat Mass Transfer 54 (2011) 4051-4068

S.M. Sohel Murshed, C.A. Nieto de Castro, Appl. Energy 184 (2016) 681-695

R. Barzegarian, M.K. Moraveji, A. Aloueyan, Exp. Therm. Fluid Sci. 74 (2016) 11-18

D. Huang, Z. Wu, B. Sunden, Exp. Therm. Fluid Sci. 72 (2016) 190-196

J.R. Satti, D.K. Das, D. Ray, Int. J. Heat Mass Transfer 107 (2016) 871- 881

W.L. McCabe, J.C. Smith, P. Harriot, Unit Operations in Chemical Engineering, 7th ed., McGraw-Hill International Edition, New York, 2006

S.P. Manikandan, R. Baskar, Period. Polytech. Chem. Eng. 62 (2018) 317-322

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318

M.S. Liu, M.C. Lin, C.Y. Tsai, C.C. Wang, Int. J. Heat Mass Transfer 49 (2006) 3028–3033

Y. Xuan, W. Roetzel, Int. J. Heat Mass Transfer 43 (2000) 3701–3707

R.S. Vajjha, D.K. Das, B.M. Mahagaonkar, Petrol. Sci. Technol. 27 (2009) 612–624

J. Koo, C. Kleinstreuer, J. Nanoparticle Res. 6 (2004) 577-588

B.C. Sahoo, R.S. Vajjha, R. Ganguli, G.A. Chukwu, D.K. Das, Petrol. Sci. Technol. 27 (2009) 1757-1770

D. Kim, Y.H. Kwon, C.G. Li, J.K. Lee, D.S. Hong, J.G. Lee, S.H. Kim, J. Nanosci. Nanotechnol. 11 (2011) 5769-5774

H.E. Patel, T. Sundararajan, S.K. Das, J. Nanopart. Res. 12 (2010) 1015-1031

W. Yu, H. Xie, I. Chen, Y. Li, Powder Technol. 197 (2010) 218-221.