Analyzing the efficacy and exhausts of punnai biodiesel-ethanol blends in nanocoated ci engines

Original scientific paper

Authors

  • Narendranathan Srinivasan Kasinathan Department of Mechanical Engineering, Agni College of Technology, Chennai-600130. Tamil Nadu, India
  • Karthikeyan Subramanian Department of Mechatronics Engineering, Agni College of Technology, Chennai-600130, Tamil Nadu, India
  • Purushothaman Panneerselvam Department of Mechanical Engineering, Agni College of Technology, Chennai-600130. Tamil Nadu, India
  • Srinivasan Tirupathi Department of Mechatronics Engineering, Agni College of Technology, Chennai-600130, Tamil Nadu, India

DOI:

https://doi.org/10.2298/CICEQ241009015S

Keywords:

Punnai biodiesel, ethanol, nano- coating, diesel engine, efficacy, exhausts

Abstract

This study experimentally investigates the performance, emission, and combustion characteristics of a nano-coated compression ignition (CI) engine fueled by Punnai biodiesel blends with varying proportions of ethanol. The nano-coating was applied to the engine's cylinder liner and piston crown to enhance heat transfer and reduce friction. The biodiesel blends were prepared by mixing Punnai oil with diesel fuel in various ratios (B20, and B30). Ethanol was added to each blend at 5% and 15% concentrations. This research desires to improve the operational efficiency of an engine which runs on a diesel, through the utilisation of a piston coated with a thermal barrier, specifically tailored for punnai methyl ester blends. Thermal barrier coatings widely prioritise zirconia due to its exceptional thermal insulation properties. B20E15 has a brake thermal efficiency that exceeds that of diesel by around 3%. Similarly, B20E05 and B20E15 demonstrate fuel consumption reductions of approximately 3.8% and 16.3%, respectively. On average, the B20 blends exhibited a reduction in CO and HC emissions are 5% and 9%. A comparative analysis clearly demonstrated that nanocoated CI engines enhance performance and diminish emissions without any major modifications.

References

[1] I. Veza, A.D. Karaoglan, E. Ileri, Case Stud. Therm. Eng. 31 (2022) 101817. https://doi.org/10.1016/j.csite.2022.101817

[2] A.T. Hoang, S. Nižetić, H.C. Ong, W. Tarelko, V.V. Pham, T.H. Le, M.Q. Chau, X.P. Nguyen, Sustainable Energy Technol. Assess. 47 (2021) 101416. https://doi.org/10.1016/j.seta.2021.101416

[3] B. Sharma, A. Shrestha, Energy Strategy. Rev. 45 (2023) 101053. https://doi.org/10.1016/j.esr.2023.101053.

[4] Y. Devarajan, R. Jayabal, D.B. Munuswamy, S. Ganesan, E.G. Varuvel, Process. Saf. Environ. Prot. 165 (2022) 374–439. https://doi.org/10.1016/j. psep.2022.07.001

[5] M. Çelik, C.Bayındırlı, M.Mehregan, Environ. Sci. Pollut. Res. 29 (2022) 30277–30284. https://doi.org/10.1007/s11356-021-18012-1

[6] M.N. Bin Mohiddin, Y.H. Tan, Y.X. Seow, J. Kansedo, N. Mubarak, M.O. Abdullah, Y.S. Chan, M.J. Khalid, Ind. Eng. Chem. 98 (2021) 60–81. https://doi.org/10.1016/j.jiec.2021.03.036

[7] R. Sathyamurthy, D. Balaji, S. Gorjian, S.J. Muthiya, R. Bharathwaaj, S. Vasanthaseelan, Sustainable Energy Technol. Assess. 43 (2021) 100981. https://doi.org/10.1016/j.seta.2020.100981

[8] P. Łagowski, G. Wcisło, D. Kurczyński, Energies 15 (2022) 6835. https://doi.org/10.3390/en15186835

[9] Y. Devarajan, R.K. Jayabal, D. Ragupathy, H. Venu, Front. Environ. Sci. Eng. 11 (2017) 1-6. https://doi.org/10.1007/s11783-017-0891-0.

[10] B. Chidambaranathan, P. Seenikannan, P. Seenikannan. J. Therm. Sci. 24 (2020) 13-25. https://doi.org/10.2298/TSCI180325233B

[11] K. Subramanian, S.A. Paramasivam, D. Dillikannan, M. Muthu, P.R. Yadav Sanjeevi, Int. J. Ambient Energy (2022) 1–14. https://doi.org/10.1080/01430750.2022.2103184

[12] F.Hamdi, I. Yahya, M. Gassoumi, Z. Boutar, R.M.R. Ahsan Shah, M. Al. Qubeissi, R.Ennetta, and H. S. Soyhan. Sci. Tech. Energ. Transition, 33 (2024).

https://doi.org/10.2516/stet/2024033

[13] S.Dey, A.P.Singh, S.S. Gajghate, S.Pal, B.B .Saha, M. Deb, P.K. Das. Sustainability. (2023) 15(20):14667. https://doi.org/10.3390/su152014667

[14] M. Nagappan & J. M. Babu. Mater. Today: Proc., (2023) https://doi.org/10.1016/j.matpr.2023.01.122

[14] L. Urtekin, S. Bayaşoğlu, Surf. Rev. Lett. 27 (2020) 1950158. https://doi.org/10.1142/S0218625X19501580

[15] D. Sakthivadivel, P.G. Kumar, R. Prabakaran, V. Vigneswaran, K. Nithyanandhan, S.C. Kim, Case Stud. Therm. Eng. 34 (2022) 102021. https://doi.org/10.1016/j.csite.2022.102021

[16] M. Tomar, N. Kumar, Energy Sources, Part A (2019) 1–18. https://doi.org/10.1080/15567036.2019.1623347

[17] P. Kumaran, S. Natarajan, IOP Conf. Ser.: Mater. Sci. Eng. 993 (2020) 012014. https://iopscience.iop.org/article/10.1088/1757-899X/993/1/012014/pdf.

[18] M.M. Musthafa, Int. J. Sustainable Energy Eng. 11 (2018) 159–166. https://doi.org/10.1080/19397038.2017.1393024

[19] M. Selvam, S. Shanmugan, S. Palani, Environ. Sci. Pollut. Res. 25 (2018) 35210–35220. https://doi.org/10.1007/s11356-018-3419-7

[20] P. Balu, P. Saravanan, V. Jayaseelan, Mater. Today: Proc. 39 (2021) 1259–1264. https://doi.org/10.1016/j.matpr.2020.04.160

[21] V. Dananjayakumar, M.B. Sanjeevannavar, S.M. Golabhanvi, M.A. Kamoji, Mater. Today: Proc. 42 (2021) 1387–1392. https://doi.org/10.1016/j.matpr.2021.01.113

[22] A.M. Narad, M.P. Joshi, Results Mater. 8 (2020) 100140. https://doi.org/10.1016/j.rinma.2020.100140

[23] L. Geng, L. Bi, Q. Li, H. Chen, Y. Xie, Energy Rep. 7 (2021) 904–915. https://doi.org/10.1016/j.egyr.2021.01.043

[24] S.B. Sai, N. Subramaniapillai, M.S.B. Khadhar Mohamed, A. Narayanan, Fuel 296 (2021) 120708. https://doi.org/10.1016/j.fuel.2021.120708

[25] V.E. Geo, A. Sonthalia, G. Nagarajan, B. Nagalingam, Fuel 209 (2017) 733–741. https://doi.org/10.1016/j.fuel.2017.08.036

[26] J. Kumaraswamy, V. Kumar, G. Purushotham, R. Suresh, J. Therm. Eng. 7 (2021) 415–428. https://doi.org/10.18186/thermal.882965

[27] S.R.K. Valiveti, H. Shaik, K.V.K. Reddy, Int. J. Ambient Energy (2020) 1–18. https://doi.org/10.1080/01430750.2020.1831592

[28] K. Sudalaiyandi, K. Alagar, R. Vignesh Kumar, V.J. Manoj Praveen, P. Madhu, Fuel 285 (2021) 119255. https://doi.org/10.1016/j.fuel.2020.119255

[29] N. Ramasamy, M.A. Kalam, M. Varman, Y.H. Teoh, Coatings 11 (2021) 692. http://eprints.um.edu.my/id/eprint/26425

[30] S. Padmanabhan, C. Joel, L. Joel, O.Y. Reddy, K.G.D.S. Harsha, S. Ganesan, Nat. Environ. Pollut. Technol. 20 (2021) 2079–2086. https://doi.org/10.46488/NEPT.2021.v20i05.025

[31] A. Naresh Kumar, P.S. Kishore, K. Brahma Raju, K. Nanthagopal, B. Ashok, Fuel 276 (2020) 118076. https://doi.org/10.1016/j.fuel.2020.118076

[32] D. Balasubramanian, A.T. Hoang, I.P. Venugopal, A. Shanmugam, J. Gao, T. Wongwuttanasatian, Fuel 287 (2020) 119815. https://doi.org/10.1016/j.fuel.2020.119815

[33] K.R.Kavitha, J. Jayaprabakar, A.Prabhu, Int. J. Ambient Energy 43 (2019) 778–782. https://doi.org/10.1080/01430750.2019.1670261

[34] A.F.Emma, S.Alangar, A.K.Yadav, Energy Convers. Manage: X 14 (2022) 100214. https://doi.org/10.1016/j.ecmx.2022.100214

[35] S. Rajendran, M. Govindasamy, Energy Sources, Part A (2021) 1–16. https://doi.org/10.1080/15567036.2021.1887408

[36] Shanmugam, R., Dillikannan, D., Kaliyaperumal, G., De Poures, M. V., & Babu, R. K, .Energy Sources, Part A (2020) 43(23), 3064–3081. https://doi.org/10.1080/15567036.2020.1833112

[37] K. Subramanian, S.A. Paramasivam, D. Dillikannan. J. Ravikumar,

Sustainable Energy Technol. Assess. 58 (2023) 103345. https://doi.org/10.1016/j.seta.2023.103345

Published

11.06.2025

Issue

Section

Articles

How to Cite

Analyzing the efficacy and exhausts of punnai biodiesel-ethanol blends in nanocoated ci engines: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ241009015S

Similar Articles

1-10 of 46

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)