Experimental study of solar air heater with C shaped ribs coated with zeolite Original scientific paper

Main Article Content

Sureshkumar Petchimuthu
https://orcid.org/0009-0008-7617-5612
Sathiya Moorthy Rajendran
https://orcid.org/0000-0001-9754-7800

Abstract

A study was conducted to determine the heat transmission rate and friction properties of a solar air heater's (SAH) absorber by including c-shaped rib, with and without perforations, and the efficiency of this absorber with and without zeolite coating was investigated. This research is carried out by varying Reynolds numbers (Re) ranges between 3000 to 18000, height of the C-shaped rib (e) ranges between 2 mm to 4 mm, and the embedded hole diameter in the c-shaped rib ranges between 1 mm to 3 mm. The impact of rib height, hole diameter, and zeolite coating on thermal efficiency and Nusselt number is compared to a flat channel under the same flow environments. A strong secondary flow is created by the free shear layer reattaching more often at higher rib heights, and a smaller hole can exaggerate heat transfer and enhance the cross-flow effect. The thermal efficiency and Nusselt number of the solar air heater with c-ribs (Rib height = 4mm and hole diameter = 1mm) and zeolite coating on the absorber increased by 29.67% and 62.16% over the flat absorber. Ribs 4mm high can increase duct friction by up to 3.1 times compared to a smooth duct.

Article Details

How to Cite
Petchimuthu, S. ., & Rajendran, S. M. . (2024). Experimental study of solar air heater with C shaped ribs coated with zeolite: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ231230010P
Section
Articles

References

S. Yadav, M.Kaushal, Varun, Siddhartha, Exp. Therm. Fluid Sci. 44 (2013) 34–41. https://doi.org/10.1016/j.expthermflusci.2012.05.011

A. Lanjewar, J.L. Bhagoria, R. Sarviya, Exp. Therm. Fluid Sci. 35 (6) (2011) 986–995. https://doi.org/10.1016/j.expthermflusci.2011.01.019

N. K. Pandey, V.K. Bajpai, Varun, Sol. Energy 134 (2016) 314–326. https://doi.org/10.1016/j.solener.2016.05.007

R.P. Saini, J. Verma, Energy 33 (8) (2008) 1277–1287. https://doi.org/ 10.1016/j.energy.2008.02.017

Varun, R.P. Saini, S.K. Singal, Renewable Energy 33 (6) (2008) 1398–1405. https://doi.org/10.1016/j.renene.2007.07.013

A. Kumar, J.L. Bhagoria, R.M. Sarviya, Energy Convers. Manage. 50 (8) (2009) 2106–2117. https://doi.org/10.1016/j.enconman.2009.01.025

M.K. Sahu, R.K. Prasad, Renewable Energy 96 (2016) 233–243. https://doi.org/10.1016/j.renene.2016.04.083

D. Jin, M. Zhang, P. Wang, S. Xu, Energy 89 (2015) 178–190. https://doi.org/10.1016/j.energy.2015.07.069

A.S. Yadav, J.L. Bhagoria, Int. J. Therm. Sci. 79 (2014) 111–131. https://doi.org/10.1016/j.ijthermalsci.2014.01.008

K.R. Aharwal, B.K. Gandhi, J.S. Saini, Renewable Energy 33 (4) (2008) 585–596. https://doi.org/10.1016/j.renene.2007.03.023

M.M. Sahu, J.L. Bhagoria, Renewable Energy 30 (13) (2005) 2057–2073. https://doi.org/10.1016/j.renene.2004.10.016

V.S. Hans, R.P. Saini, J.S. Saini, Sol. Energy 84 (6) (2010) 898–911. https://doi.org/10.1016/j.solener.2010.02.004

H.K. Ghritlahre, P.K. Sahu, S. Chand, Sol. Energy 199 (2020) 173–182. https://doi.org/10.1016/j.solener.2020.01.068

Y. Agrawal, J.L. Bhagoria, V.S. Pagey, Mater. Today Proc. 47 (2021) 6067–6073. https://doi.org/10.1016/j.matpr.2021.04.623

A.P. Singh, Varun, Siddhartha, Exp. Therm. Fluid Sci. 54 (2014) 117–126. https://doi.org/10.1016/j.expthermflusci.2014.02.004

R. Kumar, S.K. Verma, M. Singh, Mater. Today Proc. 44 (2021) 961–967. https://doi.org/10.1016/j.matpr.2020.11.006

Z. Jelonek, A. Drobniak, M. Mastalerz, I. Jelonek, Sci. Total Environ. (2020) 141267. https://doi.org/10.1016/j.energy.2022.125507

B. Bhushan, R. Singh, Sol. Energy 85 (5) (2011) 1109–1118. https://doi.org/10.1016/j.solener.2011.03.007

S. Alfarawi, S.A. Abdel-Moneim, A. Bodalal, Int. J. Therm. Sci. 118 (2017) 123–138. https://doi.org/10.1016/j.ijthermalsci.2017.04.017

A.M. Ebrahim Momin, J.S. Saini, S.C. Solanki, Int. J. Heat Mass Transfer 45 (16) (2002) 3383–3396. https://doi.org/10.1016/S0017-9310(02)00046-7

A. Lanjewar, J.L. Bhagoria, R.M. Sarviya, Energy 36(7) (2011) 4531–4541. https://doi.org/10.1016/j.energy.2011.03.054

S.B. Bopche, M.S. Tandale, Int. J. Heat Mass Transfer 52 (2009) 2834–2848. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.039

A. standard 93-97, 1977.

R. Kumar, V. Goel, P. Singh, A. Saxena, A.S. Kashyap, A. Rai, J. Energy Storage. 26 (2019) 100978. https://doi.org/10.1016/j.est.2019.100978

F. Afshari, A. Sözen, A. Khanlari, A.D. Tuncer, C. Şirin, Renewable Energy 158 (2020) 297–310. https://doi.org/10.1016/j.renene.2020.05.148

R. Khatri, S. Goswami, M. Anas, S. Sharma, S. Agarwal, S. Aggarwal, Energy Reports 6 (2020) 627–633. https://doi.org/10.1016/j.egyr.2020.11.177

C.D. Ho, H. Chang, R.C. Wang, C.S. Lin, Appl. Energy 100 (2012) 155–163. https://doi.org/10.1016/j.apenergy.2012.03.065

A.A. Farhan, A. Issam M.Ali, H.E. Ahmed, Renewable Energy 169 (2021) 1373–1385. https://doi.org/10.1016/j.renene.2021.01.109

Q.A. Jawad, A.M.J. Mahdy, A.H. Khuder, M.T. Chaichan, Case Stud. Therm. Eng. 19 (2020) 100622. https://doi.org/10.1016/j.csite.2020.100622

R. Azad, S. Bhuvad, A. Lanjewar, Int. J. Therm. Sci. 167 (2021) 107013. https://doi.org/10.1016/j.ijthermalsci.2021.107013

S. Rönsch, B. Auer, M. Kinateder, K. Gleichmann, Chem Eng Technol 43 (12) (2020) 2530-2537. https://doi.org/10.1002/ceat.202000342

Similar Articles

You may also start an advanced similarity search for this article.