HEAT TRANSFER STUDIES OF Al2O3/WATER-ETHYLENE GLYCOL NANOFLUID USING FACTORIAL DESIGN ANALYSIS Scientific paper

Main Article Content

Srinivasan Periasamy Manikandan
https://orcid.org/0000-0003-0506-7282
Nesakumar Dharmakkan
Nagamani Sumana Sumana

Abstract

The experimental study of the heat transfer coefficient of nanofluid plays a significant role in improving the heat transfer rate of the heat exchanger. A natural convection apparatus was used to study heat transfer in the suspension of Al2O3 nanoparticles in a water-ethylene glycol mixture base fluid. The effects of the heat input, the nanoparticle volume fraction, and the base fluid concentration on the heat transfer coefficient were studied using a 23 full factorial design matrix (16 experimental runs) and the MINITAB Design software. The levels for the heat input, nanoparticle volume fraction, and base fluid concentration were 10 and 100 W, 0.1 and 1 vol.%, and 30 and 50 vol.%, respectively. The residual, contour, 3D surface plots, and Pareto chart were drawn from the experimental results. The observed heat transfer coefficient showed the highest enhancement with the high level of the nanoparticle volume fraction and a moderate enhancement with the high level of heat input, and a slight enhancement with the base fluid concentration.

Article Details

How to Cite
Manikandan, S. P., Dharmakkan, N., & Sumana, N. S. (2022). HEAT TRANSFER STUDIES OF Al2O3/WATER-ETHYLENE GLYCOL NANOFLUID USING FACTORIAL DESIGN ANALYSIS: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 28(2), 95–101. https://doi.org/10.2298/CICEQ210125021M
Section
Articles

References

S.U.S. Choi, S. Lee, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280-289.

I.M. Shahrul, I.M. Mahbubul, R. Saidur, S.S. Khaleduzzaman, M.F.M. Sabri, M.M. Rahman, Numer. Heat Transfer Part A: Appl. 65 (2014) 699–713.

I.M. Shahrul, I.M. Mahbubul, R. Saidur, M.F.M. Sabri, S.S. Khaleduzzaman, J. Chem. Eng. Jpn. 47 (2014) 340–344.

I.M. Shahrul, I.M. Mahbubul, R. Saidur, M.F.M. Sabri, M.A. Amalina, S.S. Khaleduzzaman, Adv. Mater. Res. 832 (2014) 154–159.

C.Y. Lin, J.C. Wang, T.C. Chen, Appl. Energy 88 (2011) 4527–4533.

S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567-574.

D. Wen, Y. Ding, Int. J. Heat Mass Transfer 47 (2004) 5181–5188.

I. Rashidi, O. Mahian, G. Lorenzini, C. Biserni, S. Wongwises, Int. J. Heat Mass Transfer 74 (2014) 391–402.

R. Mohebbi, S. H. Khalilabad, Y. Ma, J. Appl. Fluid Mech. 12 (2019) 1151-1160.

H.C. Li, G.P. Peterson, Adv. Mech. Eng. 2 (2010) 1-10.

B.C. Pak, Y. Cho, Exp. Heat Transfer 11 (1998) 151–170.

S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, Superlattices Microstruct. 35 (2004) 543–557.

C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Appl. Therm. Eng. 27 (2007) 1501–1506.

S.D. Pandey, V.K. Nema, Exp. Therm. Fluid Sci. 38 (2012) 248–256.

P.V. Durga Prasad, S. Gupta, M. Sreeramulu, L.S. Sundar, M.K. Singh, A.C.M. Sousa, Exp. Therm. Fluid Sci. 62 (2015) 141–150.

D. Huang, Z. Wu, B. Sunden, B, Int. J. Heat Mass Transfer 89 (2015) 620–626.

H. Xie, W. Yu, W. Chen, J. Exp. Nanosci. 5 (2010) 463-472.

J.R. Satti, D.K. Das, D. Ray, Int. J. Heat Mass Transfer 107 (2017) 871–881.

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318.

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15-20.

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177-187.

B.C. Sahoo, R.S. Vajjha, R. Ganguli, G.A. Chukwu, D.K. Das, Pet. Sci. Technol. 27 (2009) 1757–1770.

W. Yu, H. Xie, Y. Li, L. Chen, Q. Wang, Powder Technol. 230 (2012) 14–19.

D. Huang, Z. Wu, B. Sunden, Exp. Therm. Fluid Sci. 72 (2016) 190–196.

R. V. Lenth, Technometrics 31 (1989) 469-473.

R. L. Plackett, J. P. Burman, Biometrika 33 (1946) 305-325.

H. Rostamian, M. N. Lotfollahi, Period. Polytech. Chem. Eng. 60 (2016) 93-97.

B.L. Dehkordi, A. Ghadimi, S.C. Henk, Metselaar, J. Nanopart. Res. 15 (2013) 1-9.

S.P. Manikandan, R. Baskar, Period. Polytech. Chem. Eng. 62 (2018) 317-322.

M. Khajeh, Food Chem. 129 (2011) 1832- 1838.