THERMAL PERFORMANCE EVALUATION OF HOT OILS AND NANOFLUIDS BY SIMULATION OF AN INDIRECT HEATING PLANT

Main Article Content

LIS DA SILVA OSTIGARD
SILVANA MATTEDI

Abstract

This paper aims to analyze the thermal performance of four different heat transfer fluids in a hot oil system located in a paraffin hydrotreatment and fractionation plant of a petroleum refinery. The software Petro-SIM® (KBC-Yokogawa) was employed to elaborate steady-state simulations intended to compare the heat transfer fluid currently used (eutectic of biphenyl and diphe­nyl oxide) and three fluids proposed as substitutes: paraffin oil (namely n-C13+) produced in the same industrial unit, a nanofluid of eutectic of biphenyl and diphenyl oxide and copper at a 6% volume fraction, and a CuO/polydi­methyl­siloxane nanofluid at a 6% volume fraction. The results showed that n-C13+ was the only heat transfer fluid that could replace the eutectic diphenyl oxide/bi­phenyl in the system under analysis since it absorbed the heat duty of 13.79 Gcal/h, which exceeded the thermal energy of 10.57 Gcal/h absorbed by the heat transfer fluid currently used at the same operating parameters. The Cu/eutectic of biphenyl and diphenyl oxide and CuO/polydimethylsiloxane nanofluids presented lower heat duty than the energy needed for the operation of the hot oil system, which was 8.31 and 8.51 Gcal/h, respectively.

Article Details

How to Cite
OSTIGARD, L. D. S. ., & MATTEDI, S. . (2021). THERMAL PERFORMANCE EVALUATION OF HOT OILS AND NANOFLUIDS BY SIMULATION OF AN INDIRECT HEATING PLANT. Chemical Industry & Chemical Engineering Quarterly, 27(1), 45–55. https://doi.org/10.2298/CICEQ191011023O
Section
Articles

References

D.C. Álvarez, PhD Thesis, University of Vigo, 2015

A. Bahadori, Essentials of Oil and Gas Utilities – Process, Design Equipment and Operation. 1st ed., Elsevier Inc., Oxford, 2016, pp. 193-199

E. Bellos, C. Tzivanidis, D. Tsimpoukis, Energy Convers. Manage. 156 (2017) 388-402

A. Yasinskiy, J. Navas, T. Aguilar, R. Alcántara, J.J. Gal¬lardo, A. Sanchez-Coronilla, E.I. Martin, D. de los Santos, C. Fernandez-Lorenzo, Renewable Energy 119 (2018) 809-819

D. Cabaleiro, J.J. Segovia, M.C. Martin, L. Lugo, J. Chem. Thermodyn. 93 (2015) 86-94

M.M. Sarafraz, M.R. Safaei, M. Goodarzi, B. Yang, M. Arjomandi. Int. J. Heat Mass Transfer 139 (2019) 675-684

N. Kumar, S.S. Sonawane, S. H. Sonawane, Int. Commun. Heat Mass Transfer 90 (2018) 1-10

S.U.S. Choi, J.A. Eastman. Office of Scientific and Technical Information, U.S. Department of Energy, 1995, pp. 1-8

A.H. Aref, A.A. Entesami, H. Erfan-Niya, E. Zaminpaima, J. Mater. Sci. 52 (2016) 2642-2660

J. Navas, A. Sanchez-Coronilla, E. I. Martin, L. Teruel, J. J. Gallardo, T. Aguilar, R. Gómez-Vilarejo, R. Alcántara, C. Fernandez-Lorenzo, J. C. Piñero, J. Martín-Calleja, Nano Energy 27 (2016) 213-224

A. Mwesigye, Z. Huan, J.P. Meyer, Energy Convers. Manage. 120 (2016) 449-465

E. Bellos, C. Tzivanidis, Energies (Basel, Switz.) 10 (2017) 848-880

M.M. Sarafraz, H. Arya, M. Saeedi, D. Ahmadi, Appl. Therm. Eng. 138 (2018) 552-562

M.M. Sarafraz, M. Arjomandi, Int. Commun. Heat Mass Transfer 94 (2018) 39-46

M.M. Sarafraz, H. Arya, M. Arjomandi, J. Mol. Liq. 263 (2018) 382-389

M.M. Sarafraz, M. Arjomandi, Appl. Therm. Eng. 137 (2018) 700-709

E. Jalali, O.A. Akbari, M.M. Sarafraz, T. Abbas, M.R. Safaei, Symmetry 11 (2019) 757 1-20

Petro-SIM® Process Simulation, https://www.kbc.global/ /software/process-simulation-software/ (accessed in 03 May 2019)

Dowtherm® A Heat Transfer Fluid, Product Technical Data. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0030/0901b803800303cd.pdf (accessed in 20 April 2018)

Therminol® VP-1 heat transfer fluid, Ultrahigh-tempe-rature vapor/liquid phase fluid. https://www.eastman.com/ /Literature_Center/T/TF9141.pdf (Accessed in 20 April 2018)

Syltherm® 800 Heat Transfer Fluid, Product Technical Data. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0880/0901b80380880bfe.pdf?filepath=/heattrans/pdfs/noreg/176-01435.pdf&fromPage=GetDoc (accessed in 07 March 2019)

B.R.G. Couto, Dimensionamento de uma Caldeira a Termofluido. Master Dissertation, University of Porto, 2009 (in Portuguese)

J.P. Wauquier, El refino del Petróleo – Petróleo Crudo; Productos Petrolíferos; Esquemas de Fabricación. 1st ed., Repsol Foundation YPF, Madrid, 2004, pp. 109-112 (in Spanish)

Petro-SIM User Manual Version 6.2. KBC Advanced Technologies Ltd. KBC-Yokogawa Company, Surrey, 2017, pp. 248-276, 522, 535, 546-549

P.F. Incropera PF, D. P. DeWitt, T. L. Bergman, A. S. Lavine, Fundamentals of heat and mass transfer. 6th ed., John Wiley & Sons, New York, 2006, pp. 929-932.

Most read articles by the same author(s)