HEAT TRANSFER PERFORMANCE OF AN Al2O3-WATER-METHANOL NANOFLUID IN A PLATE HEAT EXCHANGER Original scientific paper

Main Article Content

Periasamy Manikandan Srinivasan
https://orcid.org/0000-0003-0506-7282
Pradeep Kumar Chinnusamy
Raghul Thangamani
Surya Karuppasamy
Pranesh Ravichandran
Suriya Palaniraj
Yokeshwaran Sanmugam

Abstract

A plate heat exchanger is one of the smallest and most efficient heat exchangers on the market. This experiment aims to assess the performance of methanol-water as a base fluid in a plate heat exchanger that affects the heat transfer performance. For this study, aluminum oxide (Al2O3) nanoparticle was used in various ratios (0.25, 0.5, and 0.75 vol. %) in a base fluid (10 vol.% methanol & 90 vol.% water) to prepare a nanofluid. At two different temperatures, such as 55 °C and 60 °C, with varying flow rates (2 to 8 L/min) and varying nanoparticle concentrations (0.25 to 0.75%), thermo physical characteristics and convective heat transfer studies were performed, and the results are presented. The overall inference was that there was a notable enhancement in the hot side, cold side, and overall heat transfer coefficient by the combination of Al2O3 nanoparticle and methanol-water-based fluid. It was noted that utilizing Al2O3/methanol-water nanofluid could significantly reduce the temperature gradient in the heat exchanger and improve its performance. Maximum hot fluid coefficient of 4300 W/m2°C, cold fluid coefficient of 4600 W/m2°C, and overall coefficient of 2200 W/m2°C were noted for 0.75 vol.% nanoparticle concentration and at a flow rate of 8 L/min.

Article Details

How to Cite
Manikandan Srinivasan, P., Kumar Chinnusamy, P., Thangamani, R. ., Karuppasamy, S. ., Ravichandran, P. ., Palaniraj, S. ., & Sanmugam, Y. . (2024). HEAT TRANSFER PERFORMANCE OF AN Al2O3-WATER-METHANOL NANOFLUID IN A PLATE HEAT EXCHANGER: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(3), 257–264. https://doi.org/10.2298/CICEQ230726028M
Section
Articles

References

S.U.S. Choi, S. Lee, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280—289. https://doi.org/10.1115/1.2825978.

M. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Renewable Sustainable Energy Rev. 51 (2015) 1038—1054. https://doi.org/10.1016/j.rser.2010.11.035.

T. Mare, S. Halelfadl, S. Duret, P. Estelle, Exp. Therm. Fluid Sci. 35 (2011) 1535—1543. https://doi.org/10.1016/j.expthermflusci.2011.07.004.

D. Huang, Z. Wu, B. Sunden, Int. J. Heat Mass Transfer 89 (2015) 620—626. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082.

S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, Hem. Ind. 75 (2021) 341—352. https://doi.org/10.2298/HEMIND210520031S.

S.P. Manikandan, R. Baskar, Period. Polytech., Chem. Eng. 62 (2018) 317—322. https://doi.org/10.3311/PPch.11676.

M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1—13. https://doi.org/10.3390/en12224327.

B. Mehta, D. Subhedar, H. Panchal, Z. Said, J. Mol. Liq. 56 (2022) 120034, p.120034. https://doi.org/10.1016/j.molliq.2022.120034.

B. Mehta, D. Subhedar, Mater. Today: Proc. 56 (2022) 2031—2037. https://doi.org/10.1016/j.matpr.2021.11.374.

Y.H. Kwon, D. Kim, L. Chengguo, J.K. Lee, J. Nanosci. Nanotechnol. 11 (2011) 5769—5774. https://doi.org/10.1166/jnn.2011.4399.

S. Zeinali Heris, H. Taofik, H. Nassan, S. H. Noie, H. Sardarabadi, M. Sardarabadi, Int. J. Heat Fluid Flow 44 (2013) 375—382. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006.

B. Sahin, E. Manay, E. F. Akyurek, J. Nanomater. 2015 (2015) 1—10. https://doi.org/10.1155/2015/790839.

I. Rashidi, O. Mahian, G. Lorenzini, C. Biserni, S.

Wongwises, Int. J. Heat Mass Transfer 74 (2014) 391—402. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.030.

D. Wen, Y. Ding, Int. J. Heat Mass Transfer 47 (2004) 5181—5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012.

L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transfer 44 (2013) 7—14. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014.

S.D. Pandey, V.K. Nema, Exp. Therm. Fluid Sci. 38 (2012) 248—256. https://doi.org/10.1016/j.expthermflusci.2011.12.013.

P.V. Durga Prasad, S. Gupta, M. Sreeramulu, L.S. Sundar, M.K. Singh, A.C.M. Sousa, Exp. Therm. Fluid Sci. 62 (2015) 141—150. https://doi.org/10.1016/j.expthermflusci.2014.12.006.

S.P. Manikandan, N. Dharmakkan, S. Nagamani, Chem. Ind. Chem. Eng. Q. 28 (2022) 95—101. https://doi.org/10.2298/CICEQ210125021M.

S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, Superlattices Microstruct. 35 (2004) 543—557. https://doi.org/10.1016/j.spmi.2003.09.012.

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309—318. https://doi.org/10.2298/CICEQ170720003M.

S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, G. Thiyagarajan, G. Sivasubramani, B. Moulidharan, Chem. Ind. Chem. Eng. Q. 29 (2023) 225—233. https://doi.org/10.2298/CICEQ220430029S.

W. Ajeeb, R.R.T. da Silva, S.S. Murshed, S.S., Appl. Therm. Eng. 218 (2023) 119321. https://doi.org/10.1016/j.applthermaleng.2022.119321.

X. Wang, X. Xu, J. Thermophys. Heat Transfer 13 (1999) 474—480. https://doi.org/10.2514/2.6486.

S. Singh, S.K. Ghosh, Int. J. Numer. Methods Heat Fluid Flow 32 (2022) 2750—2777. https://doi.org/10.1108/HFF-08-2021-0580.

M.M. Sarafraz, Chem. Biochem. Eng Q. 30 (2017) 489—500. https://doi.org/10.15255/CABEQ.2015.2203.

C. Pang, J.Y. Jung, Y.T. Kang, Int. J. Heat Mass Transfer 56 (2013) 94—100. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.031.

S. Kumar, S.K. Singh, D. Sharma, Heat Transfer Eng. 44 (2023) 1703—1718. https://doi.org/10.1080/01457632.2022.2148342.

E. Firouzfar, M. Soltanieh, S.H. Noie, S.H. Saidi, Appl. Therm. Eng. 31 (2011) 1543—1545. https://doi.org/10.1016/j.applthermaleng.2011.01.029.

W. Ajeeb, S.S. Murshed, S.S., Nanomaterials 12 (2022) 3634. https://doi.org/10.3390/nano12203634.

B. Mehta, D. Subhedar, Mater. Today: Proc. 62 (2022) 418—425. https://doi.org/10.1016/j.matpr.2022.01.448.

B. Mehta, D. Subhedar, H. Panchal, K.K. Sadasivuni, Int. J. Thermofluids 20 (2023) 100410. https://doi.org/10.1016/j.ijft.2023.100410.

X. Yang, Y. Yan, D. Mullen, Appl. Therm. Eng. 33—34 (2012) 1—14. https://doi.org/10.1016/j.applthermaleng.2011.09.006.

M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1—13. https://doi.org/10.3390/en12224327.

N. Dharmakkan, P.M. Srinivasan, S. Muthusamy, A. Jomde, S. Shamkuwar, C. Sonawane, H. Panchal, Case Studies in Thermal Engineering 44 (2023) 102805. https://doi.org/10.1016/j.csite.2023.102805.

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15—20. https://doi.org/10.2298/CICEQ191220020P.

S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177—187. https://doi.org/10.2298/CICEQ200504036P.

N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567—574. https://doi.org/10.1115/1.1571080.

B. Barbés, R. Páramo, E. Blanco, M.J. Pastoriza-Gallego, M. M. Piñeiro, J.L. Legido, J. Therm. Anal. Calorim.111 (2013) 1615—1625. https://doi.org/10.1007/s10973-012-2534-9.

L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transfer 49 (2013) 17—24. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026.

B. Bakthavatchalam, K. Habib, R. Saidur, B. Baran, K. Irshad, J. Mol. Liq. 305 (2020), 112787. https://doi.org/10.1016/j.molliq.2020.112787.

S.M.S. Murshed, P. Estell´e, Renew. Sustain. Energy Rev. 76 (2017) 1134—1152. https://doi.org/10.1016/j.rser.2017.03.113.

S.M.S. Murshed, Heat Transf. Eng. 33 (8) (2012) 722—731. https://doi.org/10.1080/01457632.2011.635986.

R. Martínez-Cuenca, R. Mondragón, L. Hernández, C. Segarra, J.C. Jarque, T. Hibiki, J.E. Juliá, Appl. Therm. Eng. 98 (2016) 841—849. https://doi.org/10.1016/j.applthermaleng.2015.11.050.