MODELING AND SIMULATION OF THE BIOSURFACTANT PRODUCTION BY ENZYMATIC ROUTE USING XYLOSE AND OLEIC ACID AS REAGENTS Scientific paper

Main Article Content

Ana Bárbara Moulin Cansian
https://orcid.org/0000-0001-7886-1781
Paulo Waldir Tardioli
https://orcid.org/0000-0002-5011-9881
Felipe Fernando Furlan
https://orcid.org/0000-0002-0438-5257
Ruy de Sousa Júnior
https://orcid.org/0000-0003-4916-173X

Abstract

The biosynthesis of sugar esters, molecules with biosurfactant properties, can occur through the esterification of sugars with fatty acids by enzymatic catalysis. An alternative to reduce the impact of raw materials on the final biosurfactant production cost and the reuse of industrial waste is to use residues from vegetable oil industries as a source of free fatty acids, such as oleic acid, and lignocellulosic residues of 2G ethanol as a source of sugar (xylose). In this scenario, the present work aimed at modeling the biosurfactants production via heterogeneous biocatalysis using lipase, oleic acid, and xylose. Product separation and purification were performed using a sequence of precipitations (adding ethanol, water, and methyl ethyl ketone). The simulation was performed using the equation-oriented software EMSO (Environment for Modeling, Simulation, and Optimization), CAPE-OPEN compliant. The percentage of biosurfactants in the product was around 86%, with a recovery of 88% in the purification. Regarding the study of energy expenditure, a value of -604.1 kW of heat associated with cooling and a value of 137.6 kW associated with heating was observed. Developed mathematical models successfully described the process. The initial economic analysis of the process indicates a minimum biosurfactant selling price of US$ 72.37/kg.

Article Details

How to Cite
Moulin Cansian, A. B., Waldir Tardioli, P., Furlan, F. F., & de Sousa Júnior, R. (2022). MODELING AND SIMULATION OF THE BIOSURFACTANT PRODUCTION BY ENZYMATIC ROUTE USING XYLOSE AND OLEIC ACID AS REAGENTS: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 28(4), 265–276. https://doi.org/10.2298/CICEQ210621001C
Section
Articles

References

D.K.F. Santos, R.D. Rufino, J.M. Luna, V.A. Santos, L.A. Sarubbo, Int. J. Mol. Sci. 17 (2016) 401—432.

P.R.F. Marcelino, Ph.D. Thesis, Lorena School of Engineering at the University of São Paulo (2016).

L.A. Sarubbo, J.M. Luna, G.M. Campos-Takaki, Electron. J. Biotechnol. 9 (2006) 400—406.

A.I. El-Sheshtawy, M.E. Osman, A.A. Abo-ELnasr, A.S. Kobisy, Egypt. J. Pet. 24 (2015) 155—162.

R.M.A. Díaz, I.M. Banat, B. Dolman, J. Winterburn, P.J. Martin, New Biotechnol. 32 (2015) 720—726.

L.A. Sarubbo, J.M. Luna, R.D. Rufino, Chem. Eng. Trans. 43 (2015) 295—300.

R.D. Rufino, J.M. Luna, G.M. Campos-Takaki, L.A. Sarubbo, Electron. J. Biotechnol. 17 (2014) 34—38.

S. Mukherjee, P. Das, C. Sivapathasekaran, R. Sen, Lett. Appl. Microbiol. 48 (2009) 281—288.

S.K. Satpute, I. M Banat, P.K. Dhakephalkar, A.G. Banpurkar, B.A. Chopade, Biotechnol. Adv. 28 (2010) 436—450.

S.J. Varjani, D.P. Rana, S. Bateja, M.C. Sharma, V.N. Upasani, Int. J. Innovative Res. Sci. Eng. Technol. 3 (2014) 9205—9213.

S.J. Varjani, V.N. Upasani, Bioresour. Technol. 221 (2016) 510—516.

A.V. De Paula, J.C.S. Barboza, H.F. Castro, Quím. Nova. 28 (2005) 792—796.

P.O. Carvalho, P.R.B. Campos, M.D.A. Noffs, J.G. Oliveira, M.T. Shimizu, D.M. Silva, Quím. Nova. 26 (2003) 75—80.

R. Dalla-vecchia, M.G. Nascimento, V. Soldi, Quím. Nova. 27 (2004) 623—630.

H.G. Dong, J. Zi, S.X. Yan, W. Ping, L. Ying, Y.H. Shuang, P.Z. Sui, Enzyme Microb. Technol. 75 (2015) 30—36.

S.H. Ha, N.M. Hiep, Y.M. Koo, Biotechnol. Bioprocess Eng. 15 (2010) 126—130.

U.H. Zaidan, M.B. A. Rahman, S.S. Othman, M. Basri, E. Abdulmalek, R.N.Z. Rahman, A.B. Salleh, Food Chem. 131 (2012) 199—205.

N.L. Mai, K. Ahn, S.W. Baem, D.W. Shin, V.K. Morya, Y.M. Koo, Biotechnol. J. 9 (2014) 1565—1572.

A.C.L. Torres, L.N. Lima, P.W. Tardioli, R. Sousa Jr, Reaction Kinetics, Mechanisms and Catalysis: React. Kinet. Mech. Catal. 130 (2020) 699—712.

R.T. Hirales, R.M. Dionízio, S.S. Muñoz, C.A. Prado, R. Sousa Jr, S.S. Silva, J.C. Santos, Ultrason. Sonochem. 63 (2020) 1—9.

B. Pratto, M.S.R. Santos-Rocha, A.A. Longati, R. Sousa Jr, A.J.G. Cruz, Bioresour. Technol. 297 (2020) 1—38.

J. Ranković, J. Dodić, S. Dodić, S. Popov, Chem. Ind. Chem. Eng. Q. 15 (2009) 13—16.

C. Marzo, A.B. Díaz, I. Caro, A. Blandino, Bioethanol Prod. Food Crops. (2019) 61—79.

C.M.B. Moraes, Master Thesis, Campinas State University (2003).

E.J. Parente, Tecbio. 1 (2003) 1—66.

K.J.N. Ferreira, Master Thesis, Federal University of Maranhão (2014).

B.P. Lavarack, G.J. Griffin, D. Rodman, Catal. Today. 63 (2000) 257—265.

B. Girisuta, K. Dussan, D. Haverty, J.J. Leary, M.H.B. Hayes, Chem. Eng. J. 217 (2013) 61—70.

V. Vescovi, J.B.C. Santos, P.W. Tardioli, Biocatal. Biotransform. 35 (2017) 298—305.

F.W.W. Wagner, M.A. Dean, R.S. Motte, United States Patent, 4,983,731 (1991).

R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, United States, 3 (2009).

Sigma Aldrich. https://www.sigmaaldrich.com/BR/pt/search/lauryl- sulfat?focus=products&page=1&perPage=30&sort=relevance&term=lauryl%20sulfat&type=product [accessed 02 December 2021].

R. C. F. Soares da Silva, D. G. de Almeida, P. P. F. Brasileiro, R. D. Rufino, J. M. de Luna, L. A. Sarubbo, Biodegradation. 30 (2018) 191—201.

Most read articles by the same author(s)