MODELING AND SIMULATION OF THE BIOSURFACTANT PRODUCTION BY ENZYMATIC ROUTE USING XYLOSE AND OLEIC ACID AS REAGENTS Scientific paper
Main Article Content
Abstract
The biosynthesis of sugar esters, molecules with biosurfactant properties, can occur through the esterification of sugars with fatty acids by enzymatic catalysis. An alternative to reduce the impact of raw materials on the final biosurfactant production cost and the reuse of industrial waste is to use residues from vegetable oil industries as a source of free fatty acids, such as oleic acid, and lignocellulosic residues of 2G ethanol as a source of sugar (xylose). In this scenario, the present work aimed at modeling the biosurfactants production via heterogeneous biocatalysis using lipase, oleic acid, and xylose. Product separation and purification were performed using a sequence of precipitations (adding ethanol, water, and methyl ethyl ketone). The simulation was performed using the equation-oriented software EMSO (Environment for Modeling, Simulation, and Optimization), CAPE-OPEN compliant. The percentage of biosurfactants in the product was around 86%, with a recovery of 88% in the purification. Regarding the study of energy expenditure, a value of -604.1 kW of heat associated with cooling and a value of 137.6 kW associated with heating was observed. Developed mathematical models successfully described the process. The initial economic analysis of the process indicates a minimum biosurfactant selling price of US$ 72.37/kg.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
References
D.K.F. Santos, R.D. Rufino, J.M. Luna, V.A. Santos, L.A. Sarubbo, Int. J. Mol. Sci. 17 (2016) 401—432.
P.R.F. Marcelino, Ph.D. Thesis, Lorena School of Engineering at the University of São Paulo (2016).
L.A. Sarubbo, J.M. Luna, G.M. Campos-Takaki, Electron. J. Biotechnol. 9 (2006) 400—406.
A.I. El-Sheshtawy, M.E. Osman, A.A. Abo-ELnasr, A.S. Kobisy, Egypt. J. Pet. 24 (2015) 155—162.
R.M.A. Díaz, I.M. Banat, B. Dolman, J. Winterburn, P.J. Martin, New Biotechnol. 32 (2015) 720—726.
L.A. Sarubbo, J.M. Luna, R.D. Rufino, Chem. Eng. Trans. 43 (2015) 295—300.
R.D. Rufino, J.M. Luna, G.M. Campos-Takaki, L.A. Sarubbo, Electron. J. Biotechnol. 17 (2014) 34—38.
S. Mukherjee, P. Das, C. Sivapathasekaran, R. Sen, Lett. Appl. Microbiol. 48 (2009) 281—288.
S.K. Satpute, I. M Banat, P.K. Dhakephalkar, A.G. Banpurkar, B.A. Chopade, Biotechnol. Adv. 28 (2010) 436—450.
S.J. Varjani, D.P. Rana, S. Bateja, M.C. Sharma, V.N. Upasani, Int. J. Innovative Res. Sci. Eng. Technol. 3 (2014) 9205—9213.
S.J. Varjani, V.N. Upasani, Bioresour. Technol. 221 (2016) 510—516.
A.V. De Paula, J.C.S. Barboza, H.F. Castro, Quím. Nova. 28 (2005) 792—796.
P.O. Carvalho, P.R.B. Campos, M.D.A. Noffs, J.G. Oliveira, M.T. Shimizu, D.M. Silva, Quím. Nova. 26 (2003) 75—80.
R. Dalla-vecchia, M.G. Nascimento, V. Soldi, Quím. Nova. 27 (2004) 623—630.
H.G. Dong, J. Zi, S.X. Yan, W. Ping, L. Ying, Y.H. Shuang, P.Z. Sui, Enzyme Microb. Technol. 75 (2015) 30—36.
S.H. Ha, N.M. Hiep, Y.M. Koo, Biotechnol. Bioprocess Eng. 15 (2010) 126—130.
U.H. Zaidan, M.B. A. Rahman, S.S. Othman, M. Basri, E. Abdulmalek, R.N.Z. Rahman, A.B. Salleh, Food Chem. 131 (2012) 199—205.
N.L. Mai, K. Ahn, S.W. Baem, D.W. Shin, V.K. Morya, Y.M. Koo, Biotechnol. J. 9 (2014) 1565—1572.
A.C.L. Torres, L.N. Lima, P.W. Tardioli, R. Sousa Jr, Reaction Kinetics, Mechanisms and Catalysis: React. Kinet. Mech. Catal. 130 (2020) 699—712.
R.T. Hirales, R.M. Dionízio, S.S. Muñoz, C.A. Prado, R. Sousa Jr, S.S. Silva, J.C. Santos, Ultrason. Sonochem. 63 (2020) 1—9.
B. Pratto, M.S.R. Santos-Rocha, A.A. Longati, R. Sousa Jr, A.J.G. Cruz, Bioresour. Technol. 297 (2020) 1—38.
J. Ranković, J. Dodić, S. Dodić, S. Popov, Chem. Ind. Chem. Eng. Q. 15 (2009) 13—16.
C. Marzo, A.B. Díaz, I. Caro, A. Blandino, Bioethanol Prod. Food Crops. (2019) 61—79.
C.M.B. Moraes, Master Thesis, Campinas State University (2003).
E.J. Parente, Tecbio. 1 (2003) 1—66.
K.J.N. Ferreira, Master Thesis, Federal University of Maranhão (2014).
B.P. Lavarack, G.J. Griffin, D. Rodman, Catal. Today. 63 (2000) 257—265.
B. Girisuta, K. Dussan, D. Haverty, J.J. Leary, M.H.B. Hayes, Chem. Eng. J. 217 (2013) 61—70.
V. Vescovi, J.B.C. Santos, P.W. Tardioli, Biocatal. Biotransform. 35 (2017) 298—305.
F.W.W. Wagner, M.A. Dean, R.S. Motte, United States Patent, 4,983,731 (1991).
R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, United States, 3 (2009).
Sigma Aldrich. https://www.sigmaaldrich.com/BR/pt/search/lauryl- sulfat?focus=products&page=1&perPage=30&sort=relevance&term=lauryl%20sulfat&type=product [accessed 02 December 2021].
R. C. F. Soares da Silva, D. G. de Almeida, P. P. F. Brasileiro, R. D. Rufino, J. M. de Luna, L. A. Sarubbo, Biodegradation. 30 (2018) 191—201.