THERMODYNAMIC MODELING OF GAS SOLUBILITY IN IONIC LIQUIDS USING EQUATIONS OF STATE Original scientific paper

Main Article Content

Lucas Oliveira Cardoso
Bruno Santos Conceição
Márcio Luis Lyra Paredes
Silvana Mattedi
https://orcid.org/0000-0003-4816-7494

Abstract

This work aimed at the thermodynamic modeling of gases solubility in ILs using the SRK, CPA, and PC-SAFT. Wherefore, routines were developed for the parameterization of ILs. Implementations of the ILs were carried out in the Aspen Plus simulator, to evaluate the EoS and explore the phase equilibrium data with the predictive equations and with the correlation of the binary interaction parameter. Hence, it was verified the correlation of the density and speed of sound curves presented limitations to correct the slope of the curves of pure ILs. Nonetheless, PC-SAFT with the 4C associative scheme demonstrated a better fit for the thermophysical properties. As for the prediction of phase equilibrium, for the [EMIM][TfO], the PC-SAFT with the 2B scheme showed a better fit with CO2, while the CPA with the 2B scheme presented the best result for the H2S. For [OMIM][NTf2], PC-SAFT with 1A scheme showed better results with CO2, and CPA with 2B scheme showed the lowest deviation with H2S.

Article Details

How to Cite
Cardoso, L. O., Conceição, B. S., Paredes, M. L. L., & Mattedi, S. (2022). THERMODYNAMIC MODELING OF GAS SOLUBILITY IN IONIC LIQUIDS USING EQUATIONS OF STATE: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ220417028C
Section
Articles

References

I. Iliuta, F. larachi, Int. J. Greenhouse Gas Control 79 (2018) 1-13.

J. Carrol, A Guide for Engineers, 4. Ed., Gulf Professional Publishing (2020) p. 377.

A. Haghtalab, A. Afsharpour, Fluid Phase Equilib. 406 (2015) 10-20.

J. Haider, S. Saeed, M.A. Qyyum, B. Kazmi, R. Ahmad, A. Muhammad, M. Lee, Renewable Sustainable Energy Rev. 123 (2020) 109771.

R. Santiago, J. Lemus, A.X. Outomuro, J. Bedia, J. Palomar, Sep. Purif. Technol. 233 (2020) 116050.

G. Yu, C. Dai, L. Wu, Z. Lei, Energy Fuels 31 (2017) 1429−1439.

S.E. Sanni, O. Agboola, O. Fagbiele, E.O. Yusuf, M.E. Emetere, Egypt. J. Pet. 29 (2020) 83-94.

T.E. Akinola, E. Oko, M. Wang, Fuel 236 (2019) 135-146.

K. Huang, X.-M. Zhang, Y. Xu, Y.-T. Wu, X.-B. Hu, AlChE J. 60 (2014) 4232-4240.

S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Chem. Rev. 117 (2017) 6755-6833.

S.K. Singh, Int. J. Biol. Macromol. 132 (2019) 265-277.

M. Freemantle, Chem. Eng. News 78 (2000) 37-50.

A.H. Jalili, M. Safavi, C. Ghotbi, A. Mehdizadeh, M. Hosseini-Jenab, V. Taghikhani, J. Phys. Chem. B 116 (2012) 2758-2774.

M. Nematpour, A.H. Jalili, C. Ghotbi, D. Rashtchian, J. Nat. Gas Sci. Eng. 30 (2016) 583-591.

A.K. Jana, Process simulation and control using AspenTM, PHI Learning Private Limited, (2009) p. 317.

A.M. Law, W. D. Kelton, Simulation modeling & analysis, 2. ed., McGraw-Hill International editions, (1991) p. 672.

A.I. Papadopoulos, I. Tsivintzelis, P. Linke, P. Seferlis, Ref. Mod. Chem. Mol. Sci. Chem. Eng. 139 (2018) 1-76.

L.F. Cardona, J.O. Valderrama, J. Mol. Liq. 317 (2020) 113926.

G. Soave, Chem. Eng. Sci. 27 (1972) 1197-1203.

M.S. Graboski, T.E. Daubert, Ind. Eng. Chem. Process Des. Dev. 18 (1979) 300-306.

P.M. Mathias, Ind. Eng. Chem. Process Des. Dev. 22 (1983) 385-391.

G.M. Kontogeorgis, E.C. Voutsas, I. V. Yakoumis, D.P. Tassios, Ind. Eng. Chem. Res. 35 (1996) 4310-4318.

G.M. Kontogeorgis, M.L. Michelsen, G.K. Folas, S. Derawi, N. Von Solms, E.H. Stenby, Ind. Eng. Chem. Res. 45 (2006) 4855-4868.

S. Huang, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 2284-2294.

J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40 (2001) 1244-1260.

S.F. Baygi, H. Pahlavanzadeh, Chem. Eng. Res. Des. 93 (2015) 789-799.

J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 41 (2002) 5510-5515.

W.G. Chapman, K.E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 1709-1721.

J. Gross, O. Spuhl, F. Tumakaka, G. Sadowski, Ind. Eng. Chem. Res. 42 (2003) 1266-1274.

M. Loreno, R.A. Reis, S. Mattedi, M.L.L. Paredes, Fluid Phase Equilib. 479 (2019) 85-98.

E. Vercher, A.V. Orchillés, P.J. Miguel, A. Martínez-Andreu, J. Chem. Eng. Data 52 (2007) 1468-1482.

B-C. Lee, Korean J. Chem. Eng. 54 (2016) 213-222.

E. Zorębski, M. Geppert-Rybczńska, M. Zorębski, J. Phys. Chem. B 117 (2013) 3867-3876.

J. Kennedy, R. Eberhart, Proc. ICNN’95 Int. Conf. N. Net. (1995) 1942-1948.

J.A. Nelder, R. Mead, Comp. J. 7 (1965) 308-313.

R.J. Topliss, D. Dimitrelis, J. M. Prausnitz, Comput. Chem. Eng. 12 (1988) 483-489.

Aspen Plus 2019 - Aspen Technology Inc. – USA

I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen, E.H. Stenby, AlChE J. 56 (2010) 2965-2982.

L. Ruffine, P. Mougin, A. Barreau, Ind. Eng. Chem. Res. 45 (2006) 7688-7699.

X. Tang, J. Gross, Fluid Phase Equilib. 293 (2010) 11-21.

Nist, NIST Livro de Química na Web, https://webbook.nist.gov/chemistry/ [Accessed 09 august 2021].

G.M. Kontogeorgis, G.K. Folas, Thermodynamic Models for Industrial Applications, 1. Ed., John Wiley & Sons Inc(2010) p. 710