Heat transfer studies in a plate heat exchanger using Fe2O3-water-engine oil nanofluid Original scientific paper
Main Article Content
Abstract
Improving heat transfer performance of conventional fluid creates significant energy savings in process Industries. In this aspect, experimental study was performed to evaluate the heat transfer performance of Fe2O3-Water (W)-Engine Oil (EO) nanofluid at different concentrations and different hot fluid inlet temperatures in a plate heat exchanger. Experiments were conducted by mixing Fe2O3 nanoparticle (45 nm) in a base fluid of water-engine oil mixture with volume fractions of 5%EO + 95%W and 10%EO +90%W. Main aim of the present study is to assess the impact of variations in nanoparticle volume fraction and hot fluid inlet temperature on the heat transfer performance of prepared nanofluid. Based on the experimental results, convective heat transfer coefficient, Reynolds, Prandtl and Nusselt number were determined. Result shows that at the hot fluid inlet temperature of 75°C, the increase in Nusselt number and convective heat transfer co efficient are optimum at 0.9 vol. % nanoparticle for both the base fluid mixtures. The increase in heat transfer coefficient is because of the Brownian motion (increasing thermal conductivity) effect, motion caused by temperature gradient (Thermo-phoretic) and motion due to concentration gradient (Osmophoretic). If the volume fraction of nanoparticle increases then Reynolds number increment is higher than Prandtl number decrement, which augments Nusselt number as well as convective heat transfer coefficient.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
References
A. H. Elsheikh, H. N. Panchal, S. Sengottain, N. Alsaleh, M. Ahmadein, Water. 14 (2022) 1-13. https://doi.org/10.3390/w14060852
B. Mehta, D. Subhedar, H. Panchal H, Z. Sai, J. Mol. Liq. 364 (2022) 120034 https://doi.org/10.1016/j.molliq.2022.120034
M. Vaka, R. Walvekar, A.K. Rasheed, M. Khalid, H. Panchal, IEEE Access. 8 (2020) 58227-58247. https://doi.org/10.1109/ACCESS.2019.2950384
R. Walvekar, Y. Y. Chen, R. Saputra, M. Khalid, H. Panchal, D. Chandran, N. M. Mubarak, K. K. Sadasivuni, J. Taiwan Inst. Chem. Eng. 128 (2021) 314-326. https://doi.org/10.1016/j.jtice.2021.06.017
S. Chandrakant, H. Panchal, K. K. Sadasivuni, Energy Sources, Part A, 43 (2021) https://doi.org/10.1080/15567036.2021.1900457
S.U.S. Choi, S. Lee, S. Li, J. A. Eastman, J. Heat Transfer 121 (1999) 280-289.
https://doi.org/10.1115/1.2825978
M. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Renewable Sustainable Energy Rev. 51 (2015) 1038-1054. https://doi.org/10.1016/j.rser.2010.11.035.
M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, Int. J. Heat Fluid Flow 30 (2009) 691-699. https://doi.org/10.1016/j.ijheatfluidflow.2009.02.005.
D. Huang, Z. Wu, B. Sunden, Int. J. Heat Mass Transfer 89 (2015) 620-626. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082.
T. Mare, S. Halelfadl, S. Duret, P. Estelle, Exp. Therm. Fluid Sci. 35 (2011) 1535-1543. https://doi.org/10.1016/j.expthermflusci.2011.07.004.
Y.H. Kwon, D. Kim, L. Chengguo, J.K. Lee, J. Nanosci. Nanotechnol. 11 (2011) 5769-5774. https://doi.org/10.1166/jnn.2011.4399.
X. Wang, X. Xu, J. Thermophys. Heat Transfer 13 (1999) 474-480.
https://doi.org/10.2514/2.6486
P.M. Srinivasan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, Hem. Ind. 75 (2021) 341-352. https://doi.org/10.2298/HEMIND210520031S
S.P. Manikandan, N. Dharmakkan, S. Nagamani, Chem. Ind. Chem. Eng. Q. (2022) Article in Press https://doi.org/10.2298/CICEQ210125021M.
M. Unverdi, Y. Islamohlu, Therm. Sci. 21 (2017) 2379-2391. https://doi.org/10.2298/TSCI151110097U
M.M. Sarafraz, Chem. Biochem. Eng Q. 30 (2017) 489-500. https://doi.org/10.15255/CABEQ.2015.2203
S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15-20. https://doi.org/10.2298/CICEQ191220020P.
S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318. https://doi.org/10.2298/CICEQ170720003M.
H. Panchal, R.Sathyamoorthy, A.E. Kabeel, A. El-Agouz, D. Rufus, T. Arunkumar, A. Muthu Manohar, D. Prince Winston, A. Sharma, N. Thakar, K. K. Sadasivuni, J. Therm. Anal. Calorim. 138 (2019) 3175-3182. https://doi.org/10.1007/s10973-019-08346-x
R. Vidhya, T. Balakrishnan, B. Suresh Kumar, R. Palanisamy, H. Panchal, L. Angulo-Cabanillas, S. Shaik, B. Saleh, I. M. Alarifi, J. Therm. Anal. Calorim.. (2022) 1-11. https://doi.org/10.1155/2022/6596028
S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177-187. https://doi.org/10.2298/CICEQ200504036P.
S.P. Manikandan, R. Baskar, Period. Polytech., Chem. Eng. 62 (2018) 317-322.
https://doi.org/10.3311/PPch.11676
N. Kumar, S.S. Sonawane, S.H. Sonawane, Int. Commun. Heat Mass Transfer 90 (2018) 1-10. https://doi.org/10.1016/j.icheatmasstransfer.2017.10.001
A. Amir, S.A.A. Mirjalily, N. Nasirizadeh, H. Kargarsharifabad, Int. Commun. Heat Mass Transfer 117 (2020) 1-8. https://doi.org/10.1016/j.icheatmasstransfer.2020.104603
M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1-13. https://doi.org/10.3390/en12224327
H.R. Goshayeshi, M. Goodarzi, M. Dahari, Exp. Therm. Fluid Sci. 68 (2015) 663-668. https://doi.org/10.1016/j.expthermflusci.2015.07.014
L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transfer 44 (2013) 7-14. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014
L.S. Sundar, M.K. Singh, A. Sousa, Int. Commun. Heat Mass Transfer 49 (2013) 17-24. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026
R.S. Khedkar, A. Saikiram, S.S. Sonawane, K. Wasewar, S.S. Umre, Procedia Eng. 51 (2013) 342-346. https://doi.org/10.1016/j.proeng.2013.01.047
W. Yu, H. Xie, L. Chen, Y. Li, Colloids Surf., A 355 (2010) 109-113. . https://doi.org/10.1016/j.colsurfa.2009.11.044
S.Z. Guo, Y. Li, J.S. Jiang, H.Q. Xie, Nanoscale Res. Lett. 5 (2010) 1222-1227. https://doi.org/10.1007/s11671-010-9630-1
Y. Vermahmoudia, S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, J. Theor. Appl. Mech. 44 (2014) 32-41. https://doi.org/10.1016/j.euromechflu.2013.10.002
T.S. Mohsen, K. Arash, J. Mol. Liq. 283 (2019) 660-666. https://doi.org/10.1016/j.molliq.2019.03.140
Y.Y. Wu, W.C. Tsui, T.C. Liu, Wear 262 (2007) 819-825. https://doi.org/10.1016/j.wear.2006.08.021