Main Article Content

Kadhum Audaa Jehhef
Musaab Kadem Rasheed
Mohamed Abed Al Abas Siba


The present numerical study aims to present the effect of a titled oscillating thin plate with different inclination angles on the Al2O3-water nanofluid flow and heat transfer performance. The subsequent work establishes methods for forming fluid-structure interactions by the impact of Al2O3-water nanofluid at 0.1-1.0 vol. % volume fraction upon the thin plate using COMSOL Multiphysics 5.4. The turbulent model is solved using the (k-ε) model, and the flow assembly around the thin plate obstacle has been confirmed at the Reynolds number of Re=4×104. It exemplifies how Nanofluid flow interaction can distort structures. The turbulent, two-dimensional, stationary, and incompressible flow around an oscillating thin plate with inclined angles with upstream and downstream mounted inside a horizontal channel was studied. The numerical study includes an investigation of the effect of five inclination angles of the thin plate (30, 60, 90, 120, and 150°) on the pressure, velocity, and temperature contours of the Al2O3-water nanofluid. Also, the study presented the drag profile and left a force on the thin plate caused by the fluid flow. The results showed that a titled oscillating thin plate inside the flow direction increases pressure drop, von Mises deformation stress, x-displacement and drag force fields, and the Nusselt number. Where the pressure increased from 2.61×103 to 6.21×103 pa, the von Mises stress increased from 4.43×106 to 1.78×107 N/m, and the X-displacement increased from 1.6 to 5.5 mm when increasing the plate angle from 30 to 90°.

Article Details

How to Cite
Jehhef, K. A. ., Rasheed, M. K. ., & Abed Al Abas Siba, M. . (2023). NUMERICAL SIMULATION OF THE OSCILLATING THIN PLATE IMPACT ON NANOFLUIDS FLOW IN CHANNEL: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(2).


A. Okajima, T. Matsumoto, S. Kimura, JSME Int. J., Ser. B 41(1998) 214.

J. Carberry, J. Sheridan, D.O. Rockwell, J. Fluids Struct. 15 (2001) 523—532.

T. Sarpkaya, J. Fluids Struct. 19 (2004) 389—447.

X. Mao, Yu. Zhibin, Æ. Artur, J. Jaworski, D. Marx, Exp. Fluids 45 (2008) 833—846.

M. Dahl Jason, Ph.D. Thesis, Massachusetts Institute of Technology, (2008).

L. Lee, D. Allen, J. Fluids Struct. 26 (2010) 602—610.

X. Amandolèse, P. Hémon, Comptes Rendus Mécanique 338 (2010) 12—17.

Y. Yang, M.Sc. Thesis, The Texas A&M University (2010).

K. Lam, J.C. Hu, P. Liu, Phys. Fluids 22 (2010) 015105.

B. Shrestha, S.N. Ahsan, M. Aurelia, Phys. Fluids 30 (2018) 013102.

S. Zhang, T. Ishihara, Ocean Eng. 163 (2018) 583—598.

X. Sun, Y. Zehua, L. Jiajun, K. Wen,H. Tian, Int. J. Heat Mass Transfer 128 (2019) 319—334.

D. Yaseen, M.A. Ismael, Exp. Tech. 47 (2022) 37—46.

S. Ram, N. Ashok, MD. Shamshuddin, J. of Nanofluids 12 (2023) 777—785.

Usman, S. Shaheen, M.B. Arain, K. S. Nisar, A. Albakri, MD. Shamshuddin, F. O. Mallawi, C. Stud. in Ther. Eng. 41(2023) 102523.

MD. Shamshuddin, F. Mabood, W. A. Khan, G. R. Rajput, Heat Trans. 52 (2023) 854—873.

S.O. Salawu, R.A. Kareem, M.D. Shamshuddin, S.U. Khan, Chem. Phys. Lett. 760 (2020) 138011. https://doi/10.1016/j.cplett.2020.138011.

MD. Shamshuddin, P. S. Rao, S.O. Salawu and A.J. Chamkha, J. Proc. Mech. Eng. 236 (2022) 1877—1888. https://doi/10.1177/09544089221076918.

B. C. Pak, Y. I. Cho, Exp. Heat Trans. 11 (1998) 151—170.

Y. Xuan, W. Roetzel, Int. J. Heat Mass Transfer 43 (2000) 3701—3707.

H.C. Brinkman, J. of Chem. Phys. 20 (1952) 571—581. https://doi/10.1063/1.1700493.

J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Clarendon Press, Oxford University, UK (1881).

S.E. Maiga, B. Nguyen, C. Tam, G. Nicolas, R. Gilles, Superlattices and Microstructures 35 (2004) 543—557. https://doi/10.1016/j.spmi.2003.09.012.