STUDY OF COMBUSTION AND PERFORMANCE IN A DIESEL ENGINE FUELED BY BIODIESEL-NANOPARTICLE BLENDS

Original scientific paper

Authors

  • Mohanrajhu Nathamuni Department of Mechanical Engineering, R.M.K. Engineering College, Chennai, TN, India
  • Premkumar Duraisamy Department of Mechanical Engineering, Easwari Engineering College, Tamil Nadu, India
  • Rajakumar Muthusamy Palani Department of Artificial Intelligence and Data Science, St. Joseph's College of Engineering, TN, Chennai, India.
  • Padmavathi Kuppusamy Ramamoorthy Department of Mechanical Engineering, Panimalar Engineering College, TN, Chennai, India

DOI:

https://doi.org/10.2298/CICEQ241112024N

Keywords:

waste to energy, avocado waste peel biodiesel, graphene oxide nanoplates, performance

Abstract

This study examines the combustion and performance of avocado waste peel biodiesel (AWPB) combined with graphene oxide nanoplates (GONPs) as a substitute fuel for diesel engines. It also aims to assess the impact of engine combustion and performance while considering the feasibility of employing waste materials in fuel generation. The test fuels diesel, AWPB, AWPB+GONPs 50 ppm, and AWPB+GONPs 100 ppm were evaluated. The results showed that incylinder pressure in AWPB decreased by approximately 3.6% compared to diesel, while the heat release rate (HRR) increased notably in the AWPB+GONPs 100 ppm blend. Additionally, diesel exhibited higher ignition delay (ID) and combustion duration (CD) than all biodiesel blends. The addition of GONPs in AWPB led to a 5.98% increase in brake thermal efficiency (BTE) and a 30.12% reduction in brake-specific energy consumption (BSEC) compared to diesel. However, diesel still demonstrated higher engine torque, indicated mean effective pressure (IMEP), and air-fuel ratio (A/F ratio) relative to biodiesel fuels, whereas AWPB showed a higher exhaust gas temperature (EGT). These findings suggest that avocado peel biodiesel, when enhanced with GONPs, is a
viable and cleaner alternative to conventional diesel, offering improved combustion efficiency and reduced energy consumption.

References

[1] R.K. Babu, R. Jayabal, Y. Devarajan, Environ. Sci. Pollut. Res. 30 (2023) 26020–26026. https://doi.org/10.1007/s11356-023-26020-6.

[2] R. Jayabal, G.M.L. Leo, M.C. Das, S. Sekar, S. Arivazhagan, Process Saf. Environ. Prot. 188 (2024) 1398–1410. https://doi.org/10.1016/j.psep.2024.06.016.

[3] G.M.L. Leo, M.C. Das, R. Jayabal, M.S. Murugapoopathi, D. Srinivasan, N. Mukilarasan,

Energy 282 (2023) 128923. https://doi.org/10.1016/j.energy.2023.128923.

[4] S. Madhu, G.M.L. Leo, P. Prathap, Y. Devarajan, R. Jayabal, Process Saf. Environ. Prot. 169 (2023) 102957. https://doi.org/10.1016/j.psep.2023.02.057.

[5] N. Mohanrajhu, S. Sekar, R. Jayabal, R. Sureshkumar, Process Saf. Environ. Prot. 187 (2024)

332–342. https://doi.org/10.1016/j.psep.2024.04.115.

[6] M.A. Asokan, S.S. Prabu, S. Prathiba, D.S. Sukhadia, V. Jain, S.M. Sarwate, Mater. Today Proc. 46 (2021) 8114–8118. https://doi.org/10.1016/j.matpr.2021.03.060.

[7] P. Duraisamy, S. Subramani, R. Jayabal, Int. J. Environ. Sci. Technol. 20 (2023) 12251–12266. https://doi.org/10.1007/s13762-023-04891-z.

[8] Y. Chen, J. Zhang, Z. Zhang, W. Zhong, Z. Zhao, H. Jingyi, Heliyon 9 (2023) e19196. https://doi.org/10.1016/j.heliyon.2023.e19196

[9] O. Ogunkunle, N.A. Ahmed, Sustainability 13(10) (2021) 5465. https://doi.org/10.3390/su13105465.

[10] K. Masera, A.K. Hossain, Renewable Sustainable Energy Rev. 178 (2023) 113235. https://doi.org/10.1016/j.rser.2023.113235.

[11] S. Ahmad, A.T. Jafry, M.U. Haq, N. Abbas, H. Ajab, A. Hussain, U. Sajjad, Energies 16 (13) (2023) 5153. https://doi.org/10.3390/en16135153.

[12] F. Zheng, H.M. Cho, Energies 17(16) (2024) 4126. https://doi.org/10.3390/en17164126.

[13] R. Senthil Kumar, S. Mahalingam, J. Clean. Prod. 236 (2019) 117–128. https://doi.org/10.1016/j.jclepro.2019.117348.

[14] A. Karthikeyan, A. Elango, Renewable Energy 138 (2019) 647–654. https://doi.org/10.1016/j.renene.2019.02.032.

[15] J. Mathew, S. Varghese, J. Thomas, Fuel 299 (2021) 120–132. https://doi.org/10.1016/j.fuel.2021.120651.

[16] M.E.M. Soudagar, N.N. Nik-Ghazali, Energy Convers. Manage. 215 (2020) 120–132. https://doi.org/10.1016/j.enconman.2020.112649.

[17] A.A. Prabu, M.A. Asokan, Renewable Energy 116 (2018) 573–583. https://doi.org/10.1016/j.renene.2018.03.046.

[18] R. Jayabal, Process Saf. Environ. Prot. 186 (2024) 694–705. https://doi.org/10.1016/j.psep.2024.04.019.

[19] M.E.M. Soudagar, N.-N. Nik-Ghazali, M.A. Kalam, I.A. Badruddin, N.R. Banapurmath, M.A. Bin Ali, S. Kamangar, H.M. Cho, N. Akram, Renewable Energy 146 (2020) 2291–2307. https://doi.org/10.1016/j.renene.2019.08.025.

[20] M.E.M. Soudagar, M.A. Mujtaba, M.R. Safaei, A. Afzal, D.R. V, W. Ahmed, N.R. Banapurmath, N. Hossain, S. Bashir, I.A. Badruddin, M. Goodarzi, K. Shahapurkar, S.N. Taqui, Energy 215 (2021) 119094. https://doi.org/10.1016/j.energy.2020.119094.

[21] M.E.M. Soudagar, A. Afzal, M.R. Safaei, A.M. Manokar, A.I. EL-Seesy, M.A. Mujtaba, O.D. Samuel, I.A. Badruddin, W. Ahmed, K. Shahapurkar, M. Goodarzi, J. Therm. Anal. Calorim. 147 (2020) 525–542. https://doi.org/10.1007/s10973-020-10293-x.

[22] M.E.M. Soudagar, T.S. Kiong, S. Ramesh, N.N.N. Ghazali, M.A. Kalam, M.A. Mujtaba, H. Venu, M. Nur-E-Alam, H.M. Ali, J. Therm. Anal. Calorim. 149 (2024) 10165–10165. https://doi.org/10.1007/s10973-024-13373-4.

[23] S. Vellaiyan, M. Kandasamy, Y. Devarajan, Waste Manage. 162 (2023) 63–71. https://doi.org/10.1016/j.wasman.2023.03.012.

[24] S. Boopathi, J. Ravikumar, R. Devanathan, S.A.A. Anicia, Adv. Mater. Manuf. Eng. 279 (2020) 279–284. https://doi.org/10.1007/978-981-15-6267-9_33.

[25] A. Çakmak, H. Özcan, Fuel 315 (2022) 123200. https://doi.org/10.1016/j.fuel.2022.123200.

[26] S. Vellaiyan, Results Eng. 24 (2024) 102953. https://doi.org/10.1016/j.rineng.2024.102953.

[27] M.E.M. Soudagar, V.V. Upadhyay, N.N. Bhooshanam, R.P. Singh, D. Rabadiya, R. Venkatesh, V. Mohanavel, M.A. Alotaibi, A.H. Seikh, Biomass Bioenergy 190 (2024) 107379. https://doi.org/10.1016/j.biombioe.2024.107379.

[28] Y. Devarajan, R. Jayabal, D.B. Munuswamy, S. Ganesan, E.G. Varuvel, Process Saf. Environ. Prot. 165 (2022) 374–379. https://doi.org/10.1016/j.psep.2022.07.001.

[29] M.E.M. Soudagar, S. Shelare, D. Marghade, P. Belkhode, M. Nur-E-Alam, T.S. Kiong, S. Ramesh, A. Rajabi, H. Venu, T.M. Yunus Khan, M. Mujtaba, K. Shahapurkar, M. Kalam, I.M.R. Fattah, Energy Convers. Manag. 307 (2024) 118337. https://doi.org/10.1016/j.enconman.2024.118337.

[30] S.M. Jiangjun, W.Y. Zhang, Q. Dai, Y. Qian, Energy 300 (2024) 131616. https://doi.org/10.1016/j.energy.2024.131616.

[31] G. Pullagura, J.R. Bikkavolu, S. Vadapalli, V.V. Siva Prasad, K.R. Rao Chebattina, D. Barik, M.S. Dennison, Heliyon 10 (2024) e026519. https://doi.org/10.1016/j.heliyon.2024.e026519.

[32] F.O. Olanrewaju, H. Li, G.E. Andrews, H.N. Phylaktou, J. Energy Inst. 93 (2020) 1901-1913. https://doi.org/10.1016/j.joei.2020.04.005.

[33] P. Sharma, J. Energy Resour. Technol. 144 (2021) 144007. http://doi.org/10.1115/1.4052237.

[34] B.J. Rao, G. Pullagura, S. Vadapalli, K.R.R. Chebattina, AIP Conf. Proc. 2943 (2023) 020017. https://doi.org/10.1063/5.0182876.

[35] R. Jayabal, Process Saf. Environ. Prot. 186 (2024) 694–705. https://doi.org/10.1016/j.psep.2024.04.019.

[36] V. Rathinavelu, A. Kulandaivel, A.K. Pandey, R. Bhatt, M.V. De Poures, I. Hossain, A.H. Seikh, A. Iqbal, P. Murugan, Heliyon 10 (2024) e23988. https://doi.org/10.1016/j.heliyon.2024.e23988.

[37] R. Jayabal, L. Thangavelu, S. Subramani, Fuel 276 (2020) 118020. http://doi.org/10.1016/j.fuel.2020.118020.

[38] S. Senthil Kumar, K. Rajan, Energy Sources, Part A 43 (2019) 1–13. http://doi.org/10.1080/15567036.2019.1654565.

[39] G. Pullagura, V.S. Prasad Vanthala, S. Vadapalli, J.R. Bikkavolu, K.R.R. Chebattina, Biofuels 15 (2023) 449–460. https://doi.org/10.1080/17597269.2023.2256105.

[40] S. Krishnakumar, T.M Yunuskhan, C.R. Rajashekhar, M. Elahi, M. Soudagar, A. Afzal, A. Elfasakhany, Energies 14(14) (2021) 4306. https://doi.org/10.3390/en14144306.

[41] G. Zamboni, Energies 11(10) (2018) 2531. https://doi.org/10.3390/en11102531.

[42] B.J. Rao, J. Mech. Eng. 20 (2023) 313–333. https://doi.org/10.24191/jmeche.v20i3.23915.

[43] T. Krishnamoorthi, G. Sudalaimuthu, D. Damodharan, R. Jayabal, J. Clean. Prod. 420 (2023)

138413. https://doi.org/10.1016/j.jclepro.2023.138413.

[44] B.J. Rao, V. Srinivas, C.K.R. Rao, P. Gandhi, Emerg. Mater. 7 (2023) 847–866. https://doi.org/10.1007/s42247-023-00609-6.

[45] R. Jayabal, Process Saf. Environ. Prot. 188 (2024) 1346–54. https://doi.org/10.1016/j.psep.2024.06.012.

[46] S.M. Veeraraghavan, M.V. De Poures, G. Kaliyaperumal, D. Dillikannan, Int. J. Hydrogen

Energy 87 (2024) 227–237. https://doi.org/10.1016/j.ijhydene.2024.08.393.

[47] R. Jayabal, Process Saf. Environ. Prot. 183 (2024) 890–900. https://doi.org/10.1016/j.psep.2024.01.046.

[48] V. Modi, P.B. Rampure, A. Babbar, R. Kumar, M. Nagaral, A. Bhowmik, S. Pandey, S.M. Hasnain, M.M. Ali, M.N. Bashir, Mater. Sci. Energy Technol. 7 (2024) 257–273. https://doi.org/10.1016/j.mset.2024.02.001.

[49] B. K.M. Mahgoub, Heliyon 9 (2023) e21367. https://doi.org/10.1016/j.heliyon.2023.e21367.

[50] J. Romola, M. Meganaharshini, S.P. Rigby, I.G. Moorthy, R. Shyam Kumar, S. Karthikumar,

Renewable Sustainable Energy Rev. 145 (2021) 111109. https://doi.org/10.1016/j.rser.2021.111109.

[51] M.G.B. Millerjothi, N. Kalamegam, S. Muyiwa, Adaramola, F. Yohaness, H. Ram, C. Singh. Int. J. Engine Res. 24 (2022) 4459–4469 https://doi.org/10.1177/14680874221097574.

Published

— Updated on 08.09.2025

Issue

Section

Article

How to Cite

STUDY OF COMBUSTION AND PERFORMANCE IN A DIESEL ENGINE FUELED BY BIODIESEL-NANOPARTICLE BLENDS: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ241112024N

Similar Articles

41-50 of 104

You may also start an advanced similarity search for this article.