ENERGY ANALYSIS OF THE CONVECTIVE DRYING OF IRON ORE FINES Original scientific paper
Main Article Content
Abstract
Drying operations in iron ore processing plants have a particularly high energy demand due to the massive solid flow rates employed in this industry. A 33 full-factorial design was applied to investigate the effects of air temperature, airflow velocity, and solids load on the drying time and the specific energy consumption (SEC) of the convective drying of iron ore fines in a fixed bed. The results demonstrated that each drying air condition was associated with an optimal solids load that minimized the SEC. A load of 73 g (bed height of about 0.8 cm) was identified and validated as the optimal condition in terms of energy consumption for the configuration with the highest air temperature (90 °C) and airflow velocity (4.5 m/s). This condition resulted in a drying time of 29.0 s and a corresponding SEC of 12.8 MJ/kg to reduce the moisture from 0.11 kg water/kg dry solids to a target of 0.05 kg water/kg dry solids. Identifying the optimum values for the process variables should assist in designing and operating energy-efficient convective dryers for iron ore fines.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 142102/2019-9
References
F.P. Van Der Meer, Miner. Eng. 73 (2015) 21—30. https://doi.org/10.1016/j.mineng.2014.12.018.
A. Abazarpoor, M. Halali, R. Hejazi, M. Saghaeian, Miner. Process. Extr. Metall. 127 (2018) 40—48. https://doi.org/10.1080/03719553.2017.1284414.
H.J. Haselhuhn, S.K. Kawatra, Miner. Process. Extr. Metall. Rev. 36 (2015) 370—376. https://doi.org/10.1080/08827508.2015.1004401.
M.C. Munro, A. Mohajerani, Mar. Struct. 40 (2015) 193—224. https://doi.org/10.1016/j.marstruc.2014.11.004.
International Maritime Organization (IMO), Amendments (05-19) to the International Maritime Solid Bulk Cargoes (IMSBC) Code (on 1 January 2021) (MSC101/24Add.3), London, (2019).
D.D.C. Moreira, C.A.S. dos Santos, A.L.A. Mesquita, D.C. Moreira, Powder Technol. 373 (2020) 301—309. https://doi.org/10.1016/j.powtec.2020.06.052.
R.F. Ferreira, T.M. Pereira, R.M.F. Lima, Powder Technol. 345 (2019) 329—337. https://doi.org/10.1016/j.powtec.2019.01.024.
S.P. Suthers, V. Nunna, A. Tripathi, J. Douglas, S. Hapugoda, Trans. Inst. Min. Metall., Sect. C 123 (2014) 212—227. https://doi.org/10.1179/1743285514Y.0000000067.
A.S. Patra, D. Makhija, A.K. Mukherjee, R. Tiwari, C.R. Sahoo, B.D. Mohanty, Powder Technol. 287 (2016) 43—50. https://doi.org/10.1016/j.powtec.2015.09.030.
C.C. Mwaba, Miner. Eng. 4 (1991) 49—62. https://doi.org/10.1016/0892-6875(91)90118-F.
J. Smith, C. Sheridan, L. van Dyk, S. Naik, N. Plint, H.D.G. Turrer, Miner. Eng. 115 (2018) 1—3. https://doi.org/10.1016/j.mineng.2017.10.011.
B.L. Krasnyi, V.P. Tarasovskii, A.B. Krasnyi, Refract. Ind. Ceram. 50 (2009) 107—111. https://doi.org/10.1007/s11148-009-9156-1.
M. Huttunen, L. Nygren, T. Kinnarinen, A. Häkkinen, T. Lindh, J. Ahola, V. Karvonen, Miner. Eng. 100 (2017) 144—154. https://doi.org/10.1016/j.mineng.2016.10.025.
T. Kudra, Dry. Technol. 22 (2004) 917—932. https://doi.org/10.1081/DRT-120038572.
T. Kudra, Dry. Technol. (2012) 1190—1198. https://doi.org/10.1080/07373937.2012.690803.
A.S. Mujumdar, Handbook of Industrial Drying, 4th Ed., CRC Press, Boca Raton (2015), 861—866.
A. Sass, Ind. Eng. Chem. Process Des. Dev. 7 (1968) 319—320. https://doi.org/10.1021/i260026a031.
United States Geological Survey (USGS), Iron ore in May 2021, https://d9- wret.s3.us- west- 2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/mis-202105-feore.pdf [accessed 6 September 2021].
B.A. Chaedir, J.C. Kurnia, A.P. Sasmito, A.S. Mujumdar, Dry. Technol. 39 (2021) 1667—1684. https://doi.org/10.1080/07373937.2021.1907754.
Z.H. Wu, Y.J. Hu, D.J. Lee, A.S. Mujumdar, Z.Y. Li, Dry. Technol. 28 (2010) 834—842. https://doi.org/10.1080/07373937.2010.490485.
T. Tsukerman, C. Duchesne, D. Hodouin, Int. J. Miner. Process. 83 (2007) 99—115. https://doi.org/10.1016/j.minpro.2007.06.004.
M. Athayde, M.C. Fonseca, B.M. Covcevich, Miner. Process. Extr. Metall. Rev. 39 (2018) 266—275. https://doi.org/10.1080/08827508.2017.1423295.
A.L. Ljung, T.S. Lundström, B.D. Marjavaara,
K. Tano, Int. J. Heat Mass Transf. 54 (2011) 3882—3890. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.040.
S. Tan, J. Peng, H. Shi, Dry. Technol. 34 (2016) 651—664. https://doi.org/10.1080/07373937.2015.1070357.
J.X. Feng, Y. Zhang, H.W. Zheng, X.Y. Xie, C. Zhang, Int. J. Miner. Metall. Mater. 17 (2010) 535—540. https://doi.org/10.1007/s12613-010-0354-0.
W. Namkung, M. Cho, Dry. Technol. 22 (2004) 877—891. https://doi.org/10.1081/DRT-120034268.
T.C. Souza Pinto, A.S. Souza, J.N.M. Batista, A.M. Sarkis, L.S.L. Filho, T.F. Pádua, R. Béttega, Dry. Technol. 39 (2020) 1359—1370. https://doi.org/10.1080/07373937.2020.1747073.
A. Okunola, T. Adekanye, E. Idahosa, Res. Agric. Eng. 67 (2021) 8—16. https://doi.org/10.17221/48/2020-RAE.
N. Zhang, L. Shi, H. Qi, Y. Xie, L. Cai, Dry. Technol. 34 (2016) 161—166. https://doi.org/10.1080/07373937.2015.1012677.
J.Q. Xu, R.P. Zou, A.B. Yu, Powder Technol. 169 (2006) 99—107. https://doi.org/10.1016/j.powtec.2006.08.004.
AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed., AOAC International, Maryland (2002).
G. Albini, F.B. Freire, J.T. Freire, Chem. Eng. Process. - Process Intensif. 134 (2018) 97—104. https://doi.org/10.1016/j.cep.2018.11.001.
R.C. de Brito, T.F. de Pádua, J.T. Freire, R. Béttega, Chem. Eng. Process. - Process Intensif. 117 (2017) 95—105. https://doi.org/10.1016/j.cep.2017.03.021.
M.G.A. Vieira, L. Estrella, S.C.S. Rocha, Dry. Technol. 25 (2007) 1639—1648. https://doi.org/10.1080/07373930701590806.
A.E. Takegoshi, Y. Hirasawa, S. Imura, T. Shimazaki, Int. J. Thermophys. 5 (1984) 219—228. https://doi.org/10.1007/BF00505502.
J. Jang, H. Arastoopour, Powder Technol. 263 (2014) 14—25. https://doi.org/10.1016/j.powtec.2014.04.054.
T. Kudra, Chem. Process Eng. 19 (1998) 163—172. ISSN 0208-6425.
E. Holtz, L. Ahrné, T.H. Karlsson, M. Rittenauer, A. Rasmuson, Dry. Technol. 27 (2009) 173—185. https://doi.org/10.1080/07373930802603334.
P. Karimi, H. Abdollahi, N. Aslan, M. Noaparast, S.Z. Shafaei, Miner. Process. Extr. Metall. Rev. 32 (2011) 1—16. https://doi.org/10.1080/08827508.2010.508828.
Z. Cai, Y. Feng, H. Li, X. Liu, Miner. Process. Extr. Metall. Rev. 36 (2015) 1—6. https://doi.org/10.1080/08827508.2012.762915.
K. Meyer, Pelletizing of Iron Ores, Springer-Verlag, Heidelberg (1980).
A. Midilli, H. Kucuk, Z. Yapar, Dry. Technol. 20 (2002) 1503—1513. https://doi.org/10.1081/DRT-120005864.
E.M. Silva, J.S. Da Silva, R.S. Pena, H. Rogez, Food Bioprod. Process. 89 (2011) 39—46. https://doi.org/10.1016/j.fbp.2010.03.004.
G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters: Design, Innovation and Discovery, 2nd Ed., John Wiley & Sons, New Jersey (2005). ISBN: 978-0-471-71813-0.