Main Article Content

Amarílis Severino Souza
Thiago César de Souza Pinto
Alfredo Moisés Sarkis
Thiago Faggion de Pádua
Rodrigo Béttega


Drying operations in iron ore processing plants have a particularly high energy demand due to the massive solid flow rates employed in this industry. A 33 full-factorial design was applied to investigate the effects of air temperature, airflow velocity, and solids load on the drying time and the specific energy consumption (SEC) of the convective drying of iron ore fines in a fixed bed. The results demonstrated that each drying air condition was associated with an optimal solids load that minimized the SEC. A load of 73 g (bed height of about 0.8 cm) was identified and validated as the optimal condition in terms of energy consumption for the configuration with the highest air temperature (90 °C) and airflow velocity (4.5 m/s). This condition resulted in a drying time of 29.0 s and a corresponding SEC of 12.8 MJ/kg to reduce the moisture from 0.11 kg water/kg dry solids to a target of          0.05 kg water/kg dry solids. Identifying the optimum values for the process variables should assist in designing and operating energy-efficient convective dryers for iron ore fines.

Article Details

How to Cite
Souza , A. S. ., de Souza Pinto, T. C. ., Sarkis , A. M. ., de Pádua, T. F. ., & Béttega , R. . (2023). ENERGY ANALYSIS OF THE CONVECTIVE DRYING OF IRON ORE FINES: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(3), 189–200.


F.P. Van Der Meer, Miner. Eng. 73 (2015) 21—30.

A. Abazarpoor, M. Halali, R. Hejazi, M. Saghaeian, Miner. Process. Extr. Metall. 127 (2018) 40—48.

H.J. Haselhuhn, S.K. Kawatra, Miner. Process. Extr. Metall. Rev. 36 (2015) 370—376.

M.C. Munro, A. Mohajerani, Mar. Struct. 40 (2015) 193—224.

International Maritime Organization (IMO), Amendments (05-19) to the International Maritime Solid Bulk Cargoes (IMSBC) Code (on 1 January 2021) (MSC101/24Add.3), London, (2019).

D.D.C. Moreira, C.A.S. dos Santos, A.L.A. Mesquita, D.C. Moreira, Powder Technol. 373 (2020) 301—309.

R.F. Ferreira, T.M. Pereira, R.M.F. Lima, Powder Technol. 345 (2019) 329—337.

S.P. Suthers, V. Nunna, A. Tripathi, J. Douglas, S. Hapugoda, Trans. Inst. Min. Metall., Sect. C 123 (2014) 212—227.

A.S. Patra, D. Makhija, A.K. Mukherjee, R. Tiwari, C.R. Sahoo, B.D. Mohanty, Powder Technol. 287 (2016) 43—50.

C.C. Mwaba, Miner. Eng. 4 (1991) 49—62.

J. Smith, C. Sheridan, L. van Dyk, S. Naik, N. Plint, H.D.G. Turrer, Miner. Eng. 115 (2018) 1—3.

B.L. Krasnyi, V.P. Tarasovskii, A.B. Krasnyi, Refract. Ind. Ceram. 50 (2009) 107—111.

M. Huttunen, L. Nygren, T. Kinnarinen, A. Häkkinen, T. Lindh, J. Ahola, V. Karvonen, Miner. Eng. 100 (2017) 144—154.

T. Kudra, Dry. Technol. 22 (2004) 917—932.

T. Kudra, Dry. Technol. (2012) 1190—1198.

A.S. Mujumdar, Handbook of Industrial Drying, 4th Ed., CRC Press, Boca Raton (2015), 861—866.

A. Sass, Ind. Eng. Chem. Process Des. Dev. 7 (1968) 319—320.

United States Geological Survey (USGS), Iron ore in May 2021, https://d9- west- [accessed 6 September 2021].

B.A. Chaedir, J.C. Kurnia, A.P. Sasmito, A.S. Mujumdar, Dry. Technol. 39 (2021) 1667—1684.

Z.H. Wu, Y.J. Hu, D.J. Lee, A.S. Mujumdar, Z.Y. Li, Dry. Technol. 28 (2010) 834—842.

T. Tsukerman, C. Duchesne, D. Hodouin, Int. J. Miner. Process. 83 (2007) 99—115.

M. Athayde, M.C. Fonseca, B.M. Covcevich, Miner. Process. Extr. Metall. Rev. 39 (2018) 266—275.

A.L. Ljung, T.S. Lundström, B.D. Marjavaara,

K. Tano, Int. J. Heat Mass Transf. 54 (2011) 3882—3890.

S. Tan, J. Peng, H. Shi, Dry. Technol. 34 (2016) 651—664.

J.X. Feng, Y. Zhang, H.W. Zheng, X.Y. Xie, C. Zhang, Int. J. Miner. Metall. Mater. 17 (2010) 535—540.

W. Namkung, M. Cho, Dry. Technol. 22 (2004) 877—891.

T.C. Souza Pinto, A.S. Souza, J.N.M. Batista, A.M. Sarkis, L.S.L. Filho, T.F. Pádua, R. Béttega, Dry. Technol. 39 (2020) 1359—1370.

A. Okunola, T. Adekanye, E. Idahosa, Res. Agric. Eng. 67 (2021) 8—16.

N. Zhang, L. Shi, H. Qi, Y. Xie, L. Cai, Dry. Technol. 34 (2016) 161—166.

J.Q. Xu, R.P. Zou, A.B. Yu, Powder Technol. 169 (2006) 99—107.

AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed., AOAC International, Maryland (2002).

G. Albini, F.B. Freire, J.T. Freire, Chem. Eng. Process. - Process Intensif. 134 (2018) 97—104.

R.C. de Brito, T.F. de Pádua, J.T. Freire, R. Béttega, Chem. Eng. Process. - Process Intensif. 117 (2017) 95—105.

M.G.A. Vieira, L. Estrella, S.C.S. Rocha, Dry. Technol. 25 (2007) 1639—1648.

A.E. Takegoshi, Y. Hirasawa, S. Imura, T. Shimazaki, Int. J. Thermophys. 5 (1984) 219—228.

J. Jang, H. Arastoopour, Powder Technol. 263 (2014) 14—25.

T. Kudra, Chem. Process Eng. 19 (1998) 163—172. ISSN 0208-6425.

E. Holtz, L. Ahrné, T.H. Karlsson, M. Rittenauer, A. Rasmuson, Dry. Technol. 27 (2009) 173—185.

P. Karimi, H. Abdollahi, N. Aslan, M. Noaparast, S.Z. Shafaei, Miner. Process. Extr. Metall. Rev. 32 (2011) 1—16.

Z. Cai, Y. Feng, H. Li, X. Liu, Miner. Process. Extr. Metall. Rev. 36 (2015) 1—6.

K. Meyer, Pelletizing of Iron Ores, Springer-Verlag, Heidelberg (1980).

A. Midilli, H. Kucuk, Z. Yapar, Dry. Technol. 20 (2002) 1503—1513.

E.M. Silva, J.S. Da Silva, R.S. Pena, H. Rogez, Food Bioprod. Process. 89 (2011) 39—46.

G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters: Design, Innovation and Discovery, 2nd Ed., John Wiley & Sons, New Jersey (2005). ISBN: 978-0-471-71813-0.