THE EFFECT OF VACUUM PROCESS ON BIODIESEL PRODUCTION FROM PALM KERNEL FATTY ACID DISTILLATE Original scientific paper

Main Article Content

Rondang Tambun
https://orcid.org/0000-0001-6320-7322
Bode Haryanto
https://orcid.org/0000-0001-5803-1377
Anggara Dwita Burmana
https://orcid.org/0000-0001-7132-3913
Vikram Alexander
https://orcid.org/0000-0002-3544-8345

Abstract

This study examines the operating pressure effect on the manufacture of biodiesel from Palm Kernel Fatty Acid Distillate (PKFAD) by using para-Toluene Sulfonic Acid (PTSA) catalyst. The operating pressures studied are the vacuum pressures of 70 kPa, 80 kPa, 90 kPa, and 100 kPa, which varied with PTSA concentrations of 5%, 10%, 15%, 20%, and 25%, and the molar ratios of methanol and PKFAD are 5:1, 6:1, 7:1, 8:1, 9:1, and 10:1. Biodiesel production from PKFAD was carried out with reaction duration of 120 minutes and reaction temperature at 50 0C. The amounts of fatty acids converted to biodiesel were calculated based on the initial and acid numbers after the esterification reaction. The results show that a vacuum pressure of 70 kPa to 100 kPa provides a conversion above 96% for all catalyst concentrations and all methanol and PKFAD molar ratios. The highest conversion of PKFAD to biodiesel of 98.6% is obtained at an operating pressure of 80 kPa, a catalyst concentration of 25%, and the molar ratio of methanol and PKFAD is 10:1. The biodiesel characteristics obtained in this study have met the standards of the American Society for Testing Materials.

Article Details

How to Cite
Tambun, R. ., Haryanto, B., Burmana , A. D. ., & Alexander , V. . (2023). THE EFFECT OF VACUUM PROCESS ON BIODIESEL PRODUCTION FROM PALM KERNEL FATTY ACID DISTILLATE: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(1), 73–79. https://doi.org/10.2298/CICEQ221026012T
Section
Articles

Funding data

References

I. Ambat, V. Srivastava, M. Sillanpää, Renewable and Sustainable Energy Rev. (2018) 356—369. https://dx.doi.org/10.1016/j.rser.2018.03.069.

G. Baskar, R. Aiswarya, Renewable and Sustainable Energy Rev. 57 (2016) 496—504. https://dx.doi.org/10.1016/j.rser.2015.12.101.

J.M. Fonseca, J.G. Teleken, V. de Cinque Almeida, C. da Silva, Energy Convers. Manage. 184 (2019) 205—218. https://dx.doi.org/10.1016/j.enconman.2019.01.061.

F. Shahidi, Bailey’s Industrial Oil and Fat Products, Set, Wiley, Canada (2005), 2—20. 9780471678496.

D. Singh, D. Sharma, S.L. Soni, S. Sharma, P. Kumar Sharma, A. Jhalani, Fuel 262 (2020) 1—15. https://dx.doi.org/10.1016/j.fuel.2019.116553.

S. Dechakhumwat, P. Hongmanorom, C. Thunyaratchatanon, S.M. Smith, S. Boonyuen, A. Luengnaruemitchai, Renewable Energy 148 (2020) 897—906. https://dx.doi.org/10.1016/j.renene.2019.10.174.

A. García, C. Cara, M. Moya, J. Rapado, J. Puls, E. Castro, C. Martín, Ind. Crops Prod. 53 (2014) 148—153. https://dx.doi.org/10.1016/j.indcrop.2013.12.029.

S.N. Gebremariam, J.M. Marchetti, Energy Convers. and Manage. 174 (2018) 639—648. https://dx.doi.org/10.1016/j.enconman.2018.08.078.

G. Guan, K. Kusakabe, N. Sakurai, K. Moriyama, Fuel 88 (2009) 81—86. https://dx.doi.org/10.1016/j.fuel.2008.07.021.

J. Liu, Y. Nan, L.L. Tavlarides, Fuel 193 (2017) 187—196. https://dx.doi.org/10.1016/j.fuel.2016.12.058.

Z. Helwani, N. Aziz, M.Z.A. Bakar, H. Mukhtar, J. Kim, M.R. Othman, Energy Convers. Manage. 73 (2013) 128—134. https://dx.doi.org/10.1016/j.enconman.2013.04.004.

P. Rechnia-Gorący, A. Malaika, M. Kozłowski, Diamond Relat. Mater. 87 (2018) 124—133. https://dx.doi.org/10.1016/j.diamond.2018.05.015.

S.P. Yeong, Y.S. Chan, M.C. Law, J.K.U. Ling, J. Bioresour. Bioprod. 7 (2022) 43—51. https://dx.doi.org/10.1016/j.jobab.2021.09.002.

A.O. Esan, S.M. Smith, S. Ganesan, Process Saf. Environ. Prot. 166 (2022) 402—413. https://dx.doi.org/10.1016/j.psep.2022.08.040.

M.S.A. Farabi, M.L. Ibrahim, U. Rashid, Y.H. Taufiq-Yap, Energy Convers. Manage. 181 (2019) 562—570. https://dx.doi.org/10.1016/j.enconman.2018.12.033.

W. Xu, L. Gao, S. Wang, G. Xiao, Bioresour. Technol. 159 (2014) 286—291. https://dx.doi.org/10.1016/j.biortech.2014.03.004.

A.D. Burmana, R. Tambun, B. Haryanto, V. Alexander, IOP Conf. Ser.: Mater. Sci. Eng. 1003 (2020). https://dx.doi.org/10.1088/1757-899X/1003/1/012134.

R. Tambun, A.D. Burmana, V. Alexander, Journal of Engineering Science and Technology 17 (2022) 257—266. https://jestec.taylors.edu.my/Vol%2017%20Issue%201%20February%20%202022/17_1_19.pdf.

A. V. Metre, K. Nath, Pol. J. Chem. Technol. 17 (2015) 88—96. https://dx.doi.org/10.1515/pjct-2015-0013.

A. Hykkerud, J.M. Marchetti, Biomass Bioenergy 95 (2016) 340—343. https://dx.doi.org/10.1016/j.biombioe.2016.07.002.

Z. Zhou, X. Zhang, F. Yang, S. Zhang, J. Cleaner Prod. 215 (2019) 13—21. https://dx.doi.org/10.1016/j.jclepro.2018.12.279.

D.T. Melfi, K.C. dos Santos, L.P. Ramos, M.L. Corazza, J. Supercrit Fluids 158 (2020). https://dx.doi.org/10.1016/j.supflu.2019.104736.

S.K. Sangar, C.S. Lan, S.M. Razali, M.S.A. Farabi, Y.H. Taufiq-Yap, Energy Convers. Manage. 196 (2019) 1306—1315. https://dx.doi.org/10.1016/j.enconman.2019.06.073.

I.M. Lokman, U. Rashid, Y.H. Taufiq-Yap, R. Yunus, Renewable Energy 81 (2015) 347—354. https://dx.doi.org/10.1016/j.renene.2015.03.045.

U. Rashid, S. Soltani, T.S.Y. Choong, I.A. Nehdi, J. Ahmad, C. Ngamcharussrivichai, Catalysts 9 (2019) 1—15. https://dx.doi.org/10.3390/catal9121029.

J.M. Marchetti, A.F. Errazu, Biomass and Bioenergy 32 (2008) 892—895. https://dx.doi.org/10.1016/j.biombioe.2008.01.001.

V.B. Veljković, S.H. Lakićević, O.S. Stamenković, Z.B. Todorović, M.L. Lazić, Fuel 85 (2006) 2671—2675. https://dx.doi.org/10.1016/j.fuel.2006.04.015.

Y.C. Sharma, B. Singh, Fuel 87 (2008) 1740—1742. https://dx.doi.org/10.1016/j.fuel.2007.08.001.

Most read articles by the same author(s)