Energy and exergy diagnostics of an industrial annular shaft limekiln working with producer gas as renewable biofuel Original scientific paper

Main Article Content

Tomás Pessoa Londe Camargos
https://orcid.org/0000-0003-3174-9543
Andréa Oliveira Souza da Costa
https://orcid.org/0000-0002-6763-9752
Esly Ferreira Costa Junior
https://orcid.org/0000-0002-9245-4223

Abstract

Quicklime, a globally significant commodity used in various industrial applications, is produced in limekilns requiring substantial energy, traditionally, from fossil fuels. However, due to escalating emission constraints and depletion of fossil fuel deposits, the quicklime industry explores alternative fuels, like biomass. The literature lacks feasibility diagnostic studies on limekilns using alternative biomass fuels. Thus, this article aims to conduct energy and exergy diagnostics on an industrial limekiln using producer gas derived from eucalyptus wood as renewable biofuel. Employing industrial data and thermodynamics principles, the equipment was characterized, and results were compared with literature findings for similar limekilns using fossil fuels. The Specific Energy Consumption for the producer gas-operated limekiln was 4.8 GJ/tquicklime, with energy and exergy efficiencies of 54.6% and 42.2%. Overall energy and exergy efficiencies were 42.0 % and 23.6%, respectively, lower than literature values. was 7.6 GJ/tquicklime, higher than literature results. Identified enhancements for both renewable and fossil fuel-powered limekilns involve recovering energy and exergy, including heat recovery from exhaust gases, minimizing thermal losses, and optimizing operational variables. These findings offer valuable insights for researchers exploring renewable biofuel adoption, like producer gas derived from eucalyptus wood, as alternatives to conventional fossil fuels in limekilns.


 

Article Details

How to Cite
Londe Camargos, T. P. ., Souza da Costa, A. O. ., & Ferreira Costa Junior, E. (2024). Energy and exergy diagnostics of an industrial annular shaft limekiln working with producer gas as renewable biofuel: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ231020011C
Section
Articles

References

L. Navone, K. Moffitt, K.A. Hansen, J. Blinco, A. Payne, R. Speight, Waste Manage. 102 (2020) 149–160. https://doi.org/10.1016/j.wasman.2019.10.026

. Y. Liu, H. Shen, J. Zhang, W. Li, J. Liu, B. Liu, S. Zhang, Constr. Build. Mater. 395 (2023) 132292. https://doi.org/10.1016/j.conbuildmat.2023.132292

C. Shi, Y. Yang, Mater. 16 (2023) 4026. https://doi.org/10.3390/ma16114026

B. Li, F. Min, N. Zhang, J. Ma, Z. Li, Z. Yao, L. Zhang, Constr. Build. Mater. 408 (2023) 133492. https://doi.org/10.1016/j.conbuildmat.2023.133492

Statista (2023), Lime production by country in 2022, https://www.statista.com/statistics/657049/production-of-lime-worldwide/ [accessed 20 October 2023]

V. Alcántara, Y. Cadavid, M. Sánchez, C. Uribe, C. Echeverri-Uribe, J. Morales, J. Obando, A. Amell, Appl. Therm. Eng. 128 (2018) 393–401. https://doi.org/10.1016/j.applthermaleng.2017.09.018

A.S. Gutiérrez, C. Vandecasteele, Energy 36 (2011) 2820–2827. https://doi.org/10.1016/j.energy.2011.02.023

A. Wolter, W. Fuchs, ZKG Int. 60 (2007) 45–50. https://www.researchgate.net/publication/288154779_Specific_CO2_emissions_and_the_applications_of_lime_burning_kilns

E. Smadi, A. Chinnici, B. Dally, G.J. Nathan, Chem. Eng. J. 475 (2023) 146165. https://doi.org/10.1016/j.cej.2023.146165

W. Rong, B. Li, F. Qi, S.C.P. Cheung, Appl. Therm. Eng. 119 (2017) 629–638. https://doi.org/10.1016/j.applthermaleng.2017.03.090

S. Duan, B. Li, W. Rong, Mater. 15 (2022) 4024. https://doi.org/10.3390/ma15114024

M. Greco-Coppi, C. Hofmann, D. Walter, J. Ströhle, B. Epple, Mitig. Adapt. Strateg. Glob. Chang. 28 (2023) 30. https://doi.org/10.1007/s11027-023-10064-7

S.A. Jagnade, S.K. Nayak, J.M. Korath, N.N. Viswanathan, P.B. Abhale, Miner. Process. Extr. Metall. 132 (2023) 141–155 https://doi.org/10.1080/25726641.2023.2217403

T.S. Febriatna, P.S. Darmanto, F.B. Juangsa, Clean Energy. 7 (2023) 313–327. https://doi.org/10.1093/ce/zkac072

H. Piringer, Energy Procedia 120 (2017) 75–95. https://doi.org/10.1016/j.egypro.2017.07.156

A.S. Gutiérrez, J.B.C. Martínez, C. Vandecasteele, Appl. Therm. Eng. 51 (2013) 273–280. https://doi.org/10.1016/j.applthermaleng.2012.07.013

T.P.L. Camargos, D.L.F. Pottie, R.A.M. Ferreira, T.A.C. Maia, M.P. Porto, Energy 165 (2018) 630–638. https://doi.org/10.1016/j.energy.2018.09.109

V.F. Ramos, O.S. Pinheiro, E.F. da Costa Junior, A.O.S. da Costa, Energy 183 (2019) 946–957. https://doi.org/10.1016/j.energy.2019.07.001

T.F. Anacleto, A.E.G. O. Silva, S.R. da Silva, E.F. da Costa Junior, A.O.S. da Costa, Braz. J. Chem. Eng. 38 (2021) 197–214. https://doi.org/10.1007/s43153-020-00084-0

S.R. da Silva, G. Bonanato, E.F. da Costa Junior, B. Sarrouh, A.O.S. da Costa, Chem. Eng. Sci. 235 (2021) 116462. https://doi.org/10.1016/j.ces.2021.116462

M. Höök, X. Tang, Energy Policy 52 (2013) 797–809. https://doi.org/10.1016/j.enpol.2012.10.046

European Lime Association (EuLA), Eula Environmental Data Spreadsheet on 2011, Brussels, Belgium (2012)

WebQC (2023), Chemical Portal, https://www.webqc.org/ [accessed 20 October 2023]

J.M. Smith, H.C. Van Ness, M.M. Abbott, Introduction to Chemical Engineering Thermodynamics., McGraw Hill (2022). ISBN: 9781260721478

C.G. Maier, K.K. Kelley, J. Am. Chem. Soc. 54 (1932) 3243–3246. https://doi.org/10.1021/ja01347a029

National Institute of Standards and Technology (2023), Webbook, https://webbook.nist.gov/ [accessed 20 October 2023]

J.A. Dean, Lange’s Handbook of Chemistry, McGrawHill, New York (1999). ISBN: 9780070163843

H. Shahin, S. Hassanpour, A. Saboonchi, Energy Convers. Manage. 114 (2016) 110–121. https://doi.org/10.1016/j.enconman.2016.02.017

Y.A. Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, The McGraw-Hill Companies, New York (2019). ISBN: 9781259822674

M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of engineering thermodynamics, John Wiley & Sons (2018). ISBN: 9781119391388

D.R. Morris, J. Szargut, Energy 11 (1986) 733–755. https://doi.org/10.1016/0360-5442(86)90013-7

P.A. Ochoa George, A.S. Gutiérrez, J.B. Cogollos Martínez, C. Vandecasteele, J. Cleaner Prod. 18 (2010) 1171–1176. https://doi.org/10.1016/j.jclepro.2010.03.019

G. Song, L. Shen, J. Xiao, Ind. Eng. Chem. Res. 50 (2011) 9758–9766. https://doi.org/10.1021/ie200534n

H. Piringer, W. Werner, ZKG Int. 61 (2008) 46–52. https://www.researchgate.net/publication/285806720_Conversion_of_large-diameter_single_shaft_kilns_to_lignite_dust_firing_successfully_concluded

L. Shen, T. Gao, J. Zhao, L. Wang, L. Wang, L. Liu, F. Chen, J. Xue, Renewable Sustainable Energy Rev. 34 (2014) 337–349. https://doi.org/10.1016/j.rser.2014.03.025

B. Jiang, D. Xia, B. Yu, R. Xiong, W. Ao, P. Zhang, L. Cong, J. Cleaner Prod. 240 (2019) 118147. https://doi.org/10.1016/j.jclepro.2019.118147

N. Couto, A. Rouboa, V. Silva, E. Monteiro, K. Bouziane, Energy Procedia 36 (2013) 596–606. https://doi.org/10.1016/j.egypro.2013.07.068

B.L.C. Pereira, A. de C.O. Carneiro, A.M.M.L. Carvalho, J.L. Colodette, A.C. Oliveira, M.P.F. Fontes, BioResources 8 (2013) 4574–4592. https://doi.org/10.15376/biores.8.3.4574-4592

K. Sasujit, N. Homdoung, N. Tippayawong, Energy Eng. 119 (2022) 2149–2167. https://doi.org/10.32604/ee.2022.022069

T. de P. Protásio, M.V. Scatolino, A.C.C. de Araújo, A.F.C.F. de Oliveira, I.C.R. de Figueiredo, M.R. de Assis, P.F. Trugilho, Bioenergy Res. 12 (2019) 626–641. https://doi.org/10.1007/s12155-019-10004-x

Similar Articles

You may also start an advanced similarity search for this article.