INFLUENCE OF GRAPHENE NANO-PLATELET DISPERSION ON THE THERMO-PHYSICAL PROPERTIES OF SUNFLOWER OIL Scientific paper

Main Article Content

J. Bensam Raj
M. Muthuraj

Abstract

In this article, thermal stability, viscosity, density and surface tension of gra­ph­ene nano-platelet dispersed in sunflower oil are experimentally determined by varying the graphene concentration (0.1-1.1 wt.%) and temperature (40-100 °C). The SEM micrograph and the EDS spectra are used to characterize the graphene. Nanofluids are prepared by ultrasonication technique (two-step method) and the maximum thermal stability of about 280 °C is achieved at 1.1 wt.% graphene nanofluids. The dynamic viscosity diminishes in an exponential shape in acquiescence with the Arrhenius equation and the densities of samples are characteristic with linear decrement in the estimated temperature range. Density and surface tension increase with the graphene concentration, while a reverse trend is observed with temperature raise. The maximum ther­mal stability, viscosity, density and surface tension is obtained in the nanofluid with 1.1 wt.% concentration and the minimum is obtained in the nanofluid with 0.1 wt.% concentration.

Article Details

How to Cite
Bensam Raj, J., & Muthuraj, M. (2022). INFLUENCE OF GRAPHENE NANO-PLATELET DISPERSION ON THE THERMO-PHYSICAL PROPERTIES OF SUNFLOWER OIL: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 28(1), 67–72. https://doi.org/10.2298/CICEQ210101018B
Section
Articles

References

N. Arora, M. Gupta, Renewable Sustainable Energy Rev. 134 (2020) 110242

M. S. Alnarabiji, M. M. Husein, Fuel 267 (2020) 117262

R. Maheswaran, J. Sunil, J. Mol. Liq. 223 (2017) 643-651

O.O. Fasina, Z. Colley, Int. J. Food Prop. 11 (2008) 738-746

H. Zhang, S. Qinga, Y. Zhaia, X. Zhanga, A. Zhang, Powder Technol. 377 (2021) 748-759

R. Haris, R. Sivakumar, Int. J. Mech. Sci. 190 (2021) 106033

B. Guntreddi, A. Ghosh, Tribol. Int.153 (2021) 106596

R. Peng, X. He, J. Tong, X. Tang, Y. Wu, J. Clean Prod. 278 (2021) 123498

M. Goodarzi, I. Tlili, H. Moria, E.M. Cardoso, T.A. Alkan¬hal, A.E. Anqi, M.R. Safaeighi, Powder Technol. 377 (2021) 10-19

E.V. Timofeeva, J.L. Routbort, D. Singh, J. Appl. Phys. 106 (2009) 014304

W. Cui, Int. Commun. Heat Mass Transfer 71 (2016) 75–85

Z. Hajjar, A.M. Rashidi, A. Ghozatloo Int. Commun. Heat Mass Tran. 57 (2014) 128-131

A. Ghozatloo, A. Rashidi, M.S. Niassar, Exp. Therm. Fluid Sci. 53 (2014) 136-141

D. Karefyllakis, A.J. Goot, V. Nikiforidis, Curr. Opin. Food Sci. 29 (2019) 35-41

N.S. Shreya, V.R. Martinez, Meghan. O.M, E.F. Brian, Int. J. Food Prop. 20 (2017) S1965-S1981

R. Geibler, S. Bozorgzard, T. Streibel, E. Kaisersberger, T. Denner, R. Zimmermann, J. Therm. Anal. Calorim. 96 (2009) 813-820

M.J.B Souza, A.O.S Silva, J.M.F.B. Aquino, V.J. Fernandes, A.S. Araujo, J. Therm. Anal. Calorim. 2 (2004) 693-698

L.O. Figura, A.A. Teixeira, Food Physics, Physical pro-perties-measurement and applications, Springer-Verlag Berlin, 2007

E.E.G. Rojas, J.S.R. Coimbra, J.T. Romero, Int. J. Food Prop. 16(2013) 1620-1629

S.R. Palit, Nature 177 (1956)1180-1180

M.V. Smoluchowski, Kolloidzschr, 80 (1916) 190–195

H. Bull, Trans. Faraday Soc. 80 (1940) 80–84

G.B. Jeffery, Phys. Eng. Sci. 102 (1922) 161–179

V. Vand, J. Phys. Chem. 19 (1948) 277–299, 1948

P.S. Williams, J. Appl. Chem. 3 (1953) 120–128

R. Roscoe, J. Appl. Phys. 267 (1952) 3–6

S. Maron, S. Fok, J. Colloid Sci. 85 (1953) 540–542

J.A. Gbadeyan, E.O. Titiloye, A.T. Adeosun, Heliyon 6 (2020) e03076

A.B. Colak, Powder Technol. 381 (2021) 338-351.