The impact of heat storage material integration in an evacuated tube collector

Original scientific paper

Authors

  • Rajasekar Chockkalingam epartment of Mechatronics Engineering, Akshaya College of Engineering and Technology, Kinathukadavu, Coimbatore – 642109, Tamil Nadu, India
  • Rameshkumar Ramasamy Department of Mechanical Engineering, Builders Engineering College, Tirupur – 638108, Tamil Nadu, India
  • Barathiraja Rajendran Department of Mechanical Engineering, Mahakavi Bharathiyar College of Engineering & Technology, Vasudevanallur,s Tirunelveli -627758, Tamil Nadu, India

DOI:

https://doi.org/10.2298/CICEQ241024014R

Keywords:

Evacuated tube collector, latent heat, sensible heat, thermal storage material, rice bran wax, candellila wax

Abstract

This experimental research assessed the impacts of sensible and latent heat materials such as SAE 20W/40 (used engine oil), candelilla wax (CLW) and rice bran wax (RBW) in an evacuated tube solar air heater. Four distinct arrangements were studied: one without a thermal energy storage material (TESM), one with a sensible heat material (SHM), and two with latent heat materials (LHM), to enable comparative analysis. The maximum outlet temperature of air for ETC filled with engine oil was 108°C, for CLW 115°C and for RBW 133°C – all measured at 13:00 pm. However, without filling the TESM in the ETC, the outlet temperature was only 70 °C. The maximum temperature difference of air in the RBW material-filled ETSAH system was 94°C, whereas without TESM, the temperature was only 31°C at 13:00. The maximum efficiency of the ETSAH system was achieved when using RBW as a PCM rather than both CLW and used engine oil-filled TESM. Moreover, the efficiency of the system increases around 1.7 - 1.8 times when the velocity of air increases from 1.5 to 2.5 m/s.

References

1) M. Abuşka, S. Şevik, A. Kayapunar, Appl. Therm. Eng. 148 (2019) 684-693. https://doi.org/10.1016/j.applthermaleng.2018.11.056

2) M. Chaabane, H. Mhiri, P. Bournot, Energy Convers. Manag. 78 (2014) 897-903. https://doi.org/10.1016/j.enconman.2013.07.089

3) K. Chopra, A.K. Pathak, V.V. Tyagi, A.K. Pandey, S. Anand, A. Sari, Energy Convers. Manag. 203 (2020) 112205. https://doi.org/10.1016/j.enconman.2019.112205

4) R. Barathiraja, P. Thirumal, G. Saraswathy, I. Rahamathullah, Chem. Ind. Chem. Eng. Q. 28(3), (2022) 169-178. https://doi.org/10.2298/CICEQ201120028B

5) S.Y. Kee, Y. Munusamy, K.S. Ong, Appl. Therm. Eng. 131 (2018) 455-471. https://doi.org/10.1016/j.applthermaleng.2017.12.032

6) A.E. Khadraoui, S. Bouadila, S. Kooli, A. Guizani, A. Farhat, Appl. Therm. Eng. 107, (2016) 1057–1064. https://doi.org/10.1016/j.applthermaleng.2016.07.004

7) M.M.A. Khan, N.I. Ibrahim, I.M. Mahbubul, H.M. Ali, R. Saidur, F.A. Al-Sulaiman, Sol. Energy. 166 (2018) 334-350. https://doi.org/10.1016/j.solener.2018.03.014

8) R. Senthil, Energy Sources, Part A. 44(1) (2019) 2374-2384. https://doi.org/10.1080/15567036.2019.1649751

9) A. Kumar, S. Kumar, U. Nagar, A. Yadav, J. Sol. Energy. 1 (2013) 524715. https://doi.org/10.1155/2013/524715

10) S. Kumar, A. Kumar, A. Yadav, Int. J. Sustain. Eng. 8 (2014), 280-293. https://doi.org/10.1080/19397038.2013.878001

11) V.V. Tyagi, A.K. Pandey, S.C. Kaushik, S.K. Tyagi, J. Therm. Anal. Calorim. 107 (2012) 1345-1352. https://doi.org/10.1007/s10973-011-1617-3

12) M. Leckner, R. Zmeureanu, Appl. Energy. 88 (2011) 232-241. https://doi.org/10.1016/j.apenergy.2010.07.031

13) P. Manoj Kumar, K. Mylsamy, P.T. Saravanakumar, Energy Sources, Part A. 42 (2020), 2420-2433. https://doi.org/10.1080/15567036.2019.1607942

14) S. Nain, A. Parinam, S. Kajal, Int. J. Ambient Energy. 39 (2017), 143-146. https://doi.org/10.1080/01430750.2016.1269677

15) N.L. Panwar, S.C. Kaushik, S. Kothari, S., Renewable Sustainable Energy Rev. 15 (2011) 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037

16) S. Riffat, B. Mempouo, W. Fang, Int. J. Ambient Energy. 36 (2013) 102-115. https://doi.org/10.1080/01430750.2013.823106

17) A. Sari, A. Karlı, C. Alkan, A. Karaipekli, Energy Sources, Part A. 35 (2013). 1813-1819. https://doi.org/10.1080/15567036.2010.531507

18) S.B. Sasikumar, H. Santhanam, M.M. Noor, M. Devasenan, H.M. Ali, Energy Sources, Part A. (2020)1-13. https://doi.org/10.1080/15567036.2020.1829201

19) D. Singh, P. Mall, Energy Sources, Part A. (2020) 1-18. https://doi.org/10.1080/15567036.2020.1810825

20) A. Yaswanthkumar, V.P. Chandramohan, J. Therm. Anal. Calorim. 136 (2019) 331-343. https://doi.org/10.1007/s10973-018-7756-z

21) L. Liu, R. Wang, Y. Wang, W. Li, J. Sun, Y. Guo, C. Zhao, Energy Convers. Manag. 275 (2023) 116464. https://doi.org/10.1016/j.enconman.2022.116464

22) R.I. Rubel, M.W. Akram, M.M. Alam, A. Nusrat, R. Ahammad, M.A. Al Bari, Arabian J. Sci. Eng. 49 (2024) 14533–14551. https://doi.org/10.1007/s13369-024-09519-z

23) S. Jain, S.K. Dubey, K.R. Kumar, D. Rakshit, (2021) 167-215. https://doi.org/10.1007/978-981-33-6456-1_9

24) N. Ning, C. Sun, Z.J. Ma, S. Guo, S. Jiang, J. Zhang, D. Hou, C. Wang, J. Energy Storage . 114 (2025) 115814. https://doi.org/10.1016/j.est.2025.115814

25) F.L. Rashid, M.A. Al-Obaidi, N.S. Dhaidan, A.K. Hussein, B. Ali, M.B.B. Hamida, O.Younis, J. Energy Storage. 73 (2023) 109219. https://doi.org/10.1016/j.est.2023.109219.

26) N.S. Dhaidan, M.S.M. Al-Jethelah, 12th IIR Conference Orford , Canada . May 21-23 (2018) 240-47. http://dx.doi.org/10.18462/iir.pcm.2018.0033

27) F.L. Rashid, N.S. Dhaidan, A.J. Mahdi, S.A. Kadhim, K.A. Hammoodi, M.A. Al-Obaidi, H.I. Mohammed, S. Ahmad, S. Salahshour, E.B. Agyekum, Int. Commun. Heat Mass Transf. 162, (2025) 108573. https://doi.org/10.1016/j.icheatmasstransfer.2024.108573.

28) A.M. Ahangar, A. Rahmani, M. Maleki, R. Ahmadi, S.H. Razavi, Sol. Energy Mater. Sol. Cells. 277 (2024) 113084. https://doi.org/10.1016/j.solmat.2024.113084.

29) F.L. Rashid, N.S. Dhaidan, A.J. Mahdi, H.N. Azziz, R. Parveen, H. Togun, R.Z. Homod, Int. Commun. Heat Mass Transf. 159 (2024) 108096. https://doi.org/10.1016/j.icheatmasstransfer.2024.108096.

30) A. NematpourKeshteli, M. Iasiello, G. Langella, N. Bianco, Therm. Sci. Eng. Prog. 52 (2024) 102690. https://doi.org/10.1016/j.tsep.2024.102690.

31) S. Ganapathiraman, P. Manickam, J. Energy Storage. 84 (2024) 110929. https://doi.org/10.1016/j.est.2024.110929.

32) A. Uniyal, Y.K. Prajapati, D. Kumar, Appl. Energy. 377 (2025) 124501. https://doi.org/10.1016/j.apenergy.2024.124501

Published

07.06.2025

Issue

Section

Articles

How to Cite

The impact of heat storage material integration in an evacuated tube collector: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ241024014R

Similar Articles

1-10 of 73

You may also start an advanced similarity search for this article.