GREEN CHEMICAL PRODUCTION BASED ON THERMAL CRACKING OF INEDIBLE VEGETABLE OIL Original scientific paper

Main Article Content

Vanderlei Rodrigues Costa
Luana Marcele Chiarello
https://orcid.org/0000-0002-1213-1150
Vanderleia Botton
https://orcid.org/0000-0002-7534-4217
Edésio Luiz Simionatto
Vinicyus Rodolfo Wiggers
https://orcid.org/0000-0003-2273-8025
Henry França Meier
Laércio Ender

Abstract

This work evaluated the process for heptaldehyde, undecylenic acid, and methyl undecenoate production from castor oil, methyl ester of castor oil, and ricinoleic acid. Experiments were performed in a continuous pilot-plant scale pyrolysis reactor. Those are very important green chemical products that the thermal cracking of castor oil might produce. Transesterification of castor oil produces methyl ricinoleate, and its thermal cracking generates methyl undecenoate and heptaldehyde. The pyrolysis temperatures tested were 530 °C, 545 °C, 560 °C, and 575 °C, with residence time from 17 s to 32 s and mass flow at 400 g/h of the mixture of materials with 25% distilled water. It was observed that the temperature influenced the bio-oil yield in different degree for each material. The bio-oil was characterized by iodine index, acid number, and mass, and the contents of its compounds were obtained by GC-FID chromatography. The best result for the undecylenic acid mass yield of the desired compounds occurred at 530 °C, achieving 17.8% from ricinoleic acid and 16.5% from castor oil. For the heptaldehyde, the highest production was also obtained at 530 °C, with a value of 20.7% from methyl ester and 15.2% from ricinoleic acid.

Article Details

How to Cite
Costa, V. R. ., Chiarello, L. M. ., Botton, V. ., Simionatto , E. L. ., Wiggers, V. R. ., Meier , H. F. ., & Ender, L. . (2023). GREEN CHEMICAL PRODUCTION BASED ON THERMAL CRACKING OF INEDIBLE VEGETABLE OIL: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(4), 263–271. https://doi.org/10.2298/CICEQ220114033C
Section
Articles

References

H. Mutlu, M.A.R. MeierEur. J. Lipid Sci. Technol. 112 (2010) 10—30. http://dx.doi.org/10.1002/ejlt.200900138.

X. Mao, Q. Xie, Y. Duan, S. Yu, Y. Nie, Appl. Therm. Eng. 194 (2021) 117093. http://dx.doi.org/10.3390/ma15041565.

E.B. Mubofu, Sustain. Chem. Process. 4 (2016). https://doi.org/10.1186/s40508-016-0055-8.

M. Van der Steen, C.V. Stevens, ChemSusChem. 2, (2009) 692—713. https://doi.org/10.1002/cssc.200900075.

W.J. Kh'ng, W.A. Ibrahim, Z. Hassan, I. Izirwan, Energy Reports. 8, (2022) 11—18. https://doi.org/10.1016/j.egyr.2022.10.111.

S. Singh, S. Sharma, S.J Sarma, S.K. Brar, Environ. Prog. Sustain. Energy. 42 (2022) E14008. https://doi.org/10.1002/ep.14008.

FAOSTAT Statistical Database (2019), Food and Agriculture Organization of the United Nations, http://www.fao.org/faostat/en/#compare [accessed 7 December 2021.

V. Botton, R. Torres De Souza, V.R. Wiggers, D.R. Scharf, E.L. Simionatto, L. Ender, H.F. Meier, J. Anal. Appl. Pyrolysis 121 (2016) 387—393. http://dx.doi.org/10.1016/j.jaap.2016.09.002.

G. Das, R.K. Trivedi, JAOCS 66 (1989) 938—941. https://doi.org/10.1007/BF02682613.

C. Tang, Z. Yuan, Catalytic cracking method for preparing 10-undecenoic acid and heptaldehyde - PCT CN103819330 (2014).

G. Wetroff, L. Thillay, G. Divachetf, J. Khaladji, Pyrolysis of Ricinoleates - PCT US2807633 (1957).

H. Guobin, L. Zuyu, Y. Suling, Y. Rufeng, JAOCS 73 (1996) 1109—1112. https://doi.org/10.1007/BF02523370.

G. Menshhein, V. Costa, L.M. Chiarello, D.R. Scharf, E.L. Simionato, V. Botton, H.F. Meier, V.R. Wiggers, L. Ender, Renew. Energy 142 (2019) 561—568. https://doi.org/10.1016/j.renene.2019.04.136.

G. Menshhein, V. Costa, L.M. Chiarello, D.R. Scharf, E.L. Simionato, V. Botton, H.F. Meier, V.R. Wiggers, L. Ender, Data Br. 25 (2019) 104325. https://doi.org/10.1016/j.dib.2019.104325.

K. Ramezani, S. Rowshanzamir, M.H. Eikani, Energy 35 (2010) 4142—4148. https://doi.org/10.1016/j.energy.2010.06.034.

V. Botton, D.R. Riva, E.L. Simionatto, V.R. Wiggers, L. Ender, H.F. Meier, A.A.C. Barros, Quim. Nova 35 (2012) 677—682. https://doi.org/10.1590/S0100-40422012000400004.

H.F. Meier, V.R. Wiggers, G.R. Zonta, D.R. Scharf, E.L. Simionatto, L. Ender, Fuel 144 (2015) 50—59. https://doi.org/10.1016/j.fuel.2014.12.020.

R.F. Beims, V. Botton, L. Ender, D.R. Scharf, E.L. Simionatto, H.F. Meier, V.R. Wiggers, Fuel 217 (2018) 175—184. https://doi.org/10.1016/j.fuel.2017.12.109.

D.P. Matharasi, G. Ramya, A. Asha, P. Jayaprakash. J. Indian Chem. Soc. 99, (2022) 100757. https://doi.org/10.1016/j.jics.2022.100757.

R. Ganesan, S. Subramaniam, R. Paramasivam, J.S.M. Sabir, J.S. Femilda Josephin, K. Brindhadevi, A. Pugazhendhi, Sci. Total Environ. 757 (2021) 143781. https://doi.org/10.1016/j.scitotenv.2020.143781.

C.A. Canciam, E-xacta 4 (2011) 7—18. http://dx.doi.org/10.18674/exacta.v4i3.667.

I.G. Prabasari, R. Sarip, S. Rahmayani, N. Nazarudin, Makara J. Sci. 23 (2019) 162—168. https://doi.org/10.7454/mss.v23i3.11264.

N. Nazarudin, U. Ulyarti, O. Alfernando, Y.Y. Hans, Reaktor. 22, (2022) 21—27. https://doi.org/10.14710/reaktor.22.1.21-27.

N. Nazarudin, I.G. Prabasari, U. Ulyarti, Susilawati, A. Oktadio, J. Phys. Conf. Ser. 1567 (2020) 022021. https://doi.org/10.1088/1742-6596/1567/2/022021.

Most read articles by the same author(s)