EFFECTS OF EXHAUST GAS RECIRCULATION ON DIESEL ENGINE USING HYBRID BIODIESEL Original scientific paper

Main Article Content

Ananthakumar Sudalaimani
https://orcid.org/0000-0002-1238-7260
Barathiraja Rajendran
https://orcid.org/0000-0002-4815-7491
Thiyagaraj Jothi
https://orcid.org/0000-0001-7594-7782
Ashokkumar Mohankumar
https://orcid.org/0000-0002-8926-4103

Abstract

The primary aim of this study is to alternate between conventional fossil fuels and reduce the emissions of greenhouse gases and sulfur dioxide from diesel engines. In the current study, to mitigate NOx emissions, the exhaust gas recirculation (EGR) technique was implemented utilizing hybrid alternate biodiesel at three varying proportions of 5%, 10%, and 15% at an optimum compression ratio of 20:1. The findings demonstrate that for hybrid alternative biodiesel at a compression ratio of 20:1 and fully loaded, the brake thermal efficiency (BTHE) is 31.8% with 10% EGR. With 15% EGR, the peak pressure for the hybrid biodiesel is lower than it would be without EGR by around 2.28%. When EGR is increased, the ignition delay and NOx emissions are reduced slightly. With only an increase in EGR rates of up to 10%, brake-specific fuel consumption (BSFC) values were reduced efficiently. The hybrid biodiesel with 10% EGR reduces exhaust gas temperature to 341 °C.

Article Details

How to Cite
Sudalaimani, A., Rajendran, B. ., Jothi, T. ., & Mohankumar, A. . (2024). EFFECTS OF EXHAUST GAS RECIRCULATION ON DIESEL ENGINE USING HYBRID BIODIESEL: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(3), 179–192. https://doi.org/10.2298/CICEQ230303022A
Section
Articles

References

M.S.N. Awang, N.W. Mohd Zulkifli, M.M. Abbas, S. Amzar Zulkifli, M.A. Kalam, M.H. Ahmad, W.M.A.W. Daud, ACS

Omega 6(33) (2021) 21655—21675. https://doi.org/10.1021/acsomega.1c03073.

C. Kaewbuddee, E. Sukjit, J. Srisertpol, S. Maithomklang, K. Wathakit, N. Klinkaew, W. Arjharn, Energies 13(11) (2020) 2823. https://doi.org/10.3390/en13112823.

R.D. Arjanggi, J. Kansedo, J. Energy Inst. 93(3) (2020) 934—952. https://doi.org/10.1016/j.joei.2019.08.005.

D. Damodharan, B. Rajesh Kumar, K. Gopal, M.V. De Poures, B. Sethuramasamyraja, Rev. Environ. Sci. Bio/Techol. 18(4) (2019) 681—697. https://doi.org/10.1007/s11157-019-09516-x.

S. Kumar, R. Prakash, S. Murugan, R.K. Singh, Energy Convers. Manage. 74 (2013) 323—331. https://doi.org/10.1016/j.enconman.2013.05.028.

M. Mani, G. Nagarajan, S. Sampath, Energy 36 (2011) 212—219. https://doi.org/10.1016/j.energy.2010.10.049.

A.N. Ozsezen, M. Canakci, Ali Turkcan, C. Sayin, Fuel 88 (2009) 629—636. https://doi.org/10.1016/j.fuel.2008.09.023.

Y.H. Chen, T.H. Chiang, J. H. Chen, Fuel 92 (2012) 377—380. https://doi.org/10.1016/j.fuel.2011.08.018.

P.K. Devan, N.V. Mahalakshmi, Appl. Energy 86 (2009) 675—680. https://doi.org/10.1016/j.apenergy.2008.07.008.

S.M. Ashrafur Rahman, H.H. Masjuki, M.A. Kalam, M.J. Abedin, A. Sanjid, H. Sajjad, Energy Convers. Manage. 76 (2013) 362—367. https://doi.org/10.1016/j.enconman.2013.07.061.

N. Usta, E. Ozturk, O. Can, E.S. Conkur, S. Nas, A.H. Con, A.C. Can, M. Topcu, Energy Convers. Manage. 46 (2005) 741—755. https://doi.org/10.1016/j.enconman.2004.05.001.

M. Habibullah, I.M. Rizwanul Fattah, H.H. Masjuki, M.A. Kalam, Am. Chem. Soc. 29(2) (2015) 734–743. https://doi.org/10.1021/ef502495n.

S. Imtenan, H.H. Masjuki, M. Varman, M.A. Kalam, M.I. Arbab, H. Sajjad, S.M. Ashrafur Rahman, Energy Convers. Manage. 83 (2014) 149—158. https://doi.org/10.1016/j.enconman.2014.03.052.

C.D. Rakopoulos, D.C. Rakopoulos, D.T. Hountalas, E.G. Giakoumis, E.C. Andritsakis, Fuel 87 (2008) 147—157. https://doi.org/10.1016/j.fuel.2007.04.011.

H. Venu, L. Subramani, V. D. Raju, Renew. Energy 140 (2019) 245—263. https://doi.org/10.1016/j.renene.2019.03.078.

M. Zheng, G.T. Reader, J.G. Hawley, Energy Convers. Manage. 45(6) (2004) 883—900. https://doi.org/10.1016/S0196-8904(03)00194-8.

O. Can, E. Ozturk, H. Solmaz, F. Aksoy, C. Cinar, H. Serdar Yucesu, Appl. Therm. Eng. 95 (2016) 115—124. https://doi.org/10.1016/j.applthermaleng.2015.11.056.

V.J.J. Prasad, N. Hari Babu, B.V. Appa Rao, J. Renewable Sustainable Energy 1 (2009) 053104. https://doi.org/10.1063/1.3255043.

M. Mani, G. Nagarajan, S. Sampath, Fuel 89 (2010) 1826—1832. https://doi.org/10.1016/j.fuel.2009.11.009.

A.S. Ramadhas, C. Muraleedharan, S. Jayaraj, Clean 36(12) (2008) 978—983. https://doi.org/10.1002/clen.200800108.

A. Tsolakis, A. Megaritis, M.L. Wyszynski, K. Theinnoi, Energy 32 (2007) 2072—2080. https://doi.org/10.1016/j.energy.2007.05.016.

K. Venkateswarlu, B.S.R. Murthy, V.V. Subbarao, K. Vijaya Kumar, Front. Energy 6(3) (2012) 304—310. https://doi.org/10.1007/s11708-012-0195-9.

B. Rajesh kumar, S. Saravanan, Fuel 160 (2015) 217—226. https://doi.org/10.1016/j.fuel.2015.07.089.

K. Srinivasa Rao, Int. J. Mech. Mechatron. Eng. 16(2) (2016) 64—69. https://www.researchgate.net/publication/303573496.

S. Park, H. Kim, B. Choi, J. Mech. Sci. Technol. 23 (2009) 2555—2564. https://doi.org/10.1007/s12206-009-0704-x.

H.E. Saleh, Fuel 88 (2009)1357—1364. https://doi.org/10.1016/j.fuel.2009.01.023.

M.B. Tasić, M.S. Stanković, M.D. Kostić, O.S. Stamenković, V.B. Veljković, Chem. Ind. Chem. Eng. Q. 28 (2022) 237—245. https://doi.org/10.2298/CICEQ210819035T.

N.D.L.D. Silva, F.P.V. Loz, J.I. Soletti, D.D.G. Coelho, Chem. Ind. Chem. Eng. Q. 27 (2021) 155—163. https://doi.org/10.2298/CICEQ191117034S.

I. Veza, A.T. Hoang, A.A. Yusuf, S.G. Herawan, M.E.M. Soudagar, O.D. Samuel, M.F.M. Said, A.S. Silitonga, Fuel 333 (2023) 126377. https://doi.org/10.1016/j.fuel.2022.126377.

C. Enweremadu, O. Samuel, H. Rutto, Environ. Clim. Technol. 26(1) (2022) 630—647. https://doi.org/10.2478/rtuect-2022-0048.