CATALYTIC PERFORMANCE OF DESILICATED HZSM-12 FOR BENZYLATION REACTION OF BENZENE WITH BENZYL ALCOHOL Original scientific paper

Main Article Content

Sema Akyalcin
https://orcid.org/0000-0001-8269-2968
Levent Akyalcin
https://orcid.org/0000-0001-6779-1597
Morten Bjørgen
https://orcid.org/0000-0003-3920-3123

Abstract

The catalytic production of diphenylmethane from the reaction of benzene with benzyl alcohol was investigated using HZSM-12 and desilicated  HZSM-12 that was obtained by treating ZSM-12 with 0.2M NaOH solution at 85 °C for 60 min. The untreated and alkaline treated ZSM-12 zeolites were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, and temperature-programmed desorption of ammonia. The desilicated HZSM-12 showed promising catalytic performance with benzyl alcohol conversion of 100% and the selectivity to diphenylmethane of 74% and 87% in 4 h and 8 h reaction time, respectively. The reaction parameters affecting benzyl alcohol conversion and product distribution were also presented. The activities of fresh and regenerated catalysts were compared, and characterization results indicated that the occluded organic molecules decreased the number of acidic sites of the catalyst after the reaction and regeneration.

Article Details

How to Cite
Akyalcin, S. ., Akyalcin, L. ., & Bjørgen, M. . (2023). CATALYTIC PERFORMANCE OF DESILICATED HZSM-12 FOR BENZYLATION REACTION OF BENZENE WITH BENZYL ALCOHOL: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(1), 1–10. https://doi.org/10.2298/CICEQ220620006A
Section
Articles

References

K. Leng, Y. Wang, C. Hou, C. Lancelot, C. Lamonier, A. Rives, Y. Sun, J. Catal. 306 (2013) 100—108. http://doi.org/10.1016/j.jcat.2013.06.004.

N. Candu, M. Florea, S.M. Coman, V.I. Parvulescu, Appl. Catal., A 393 (2011) 206—214. https://doi.org/10.1016/j.apcata.2010.11.044.

D. Yin, C. Li, L. Tao, N. Yu, S. Hu, D. Yin, J. Mol. Catal. A: Chem. 245 (2006) 260—265. https://doi.org/10.1016/j.molcata.2005.10.010.

N. Candu, S. Wuttke, E. Kemnitz, S.M. Coman, V.I. Parvulescu, Pure Appl. Chem. 84 (2012) 427—437. http://doi.org/10.1351/PAC-CON-11-09-34.

K. Leng, S. Sun, B. Wang, L. Sun, W. Xu, Y. Sun, Catal. Commun. 28 (2012) 64—68. https://doi.org/10.1016/j.catcom.2012.08.016.

Y. Wang, Y. Sun, C. Lancelot, C. Lamonier, J.C. Morin, B. Revel, L. Delevoye, A. Rives, Microporous Mesoporous Mater. 206 (2015) 42—51. http://doi.org/10.1016/j.micromeso.2014.12.017.

V.D. Chaube, Catal. Commun. 5 (2004) 321—326. https://doi.org/10.1016/j.catcom.2004.02.013.

H. Jin, M.B. Ansari, E.Y. Jeong, S.E. Park, J. Catal. 291 (2012) 55—62. https://doi.org/10.1016/j.jcat.2012.04.006.

Y. Sun, R. Prins, Appl. Catal., A 336 (2008) 11—16. https://doi.org/10.1016/j.apcata.2007.08.015.

L. Tosheva, V.P. Valtchev, Chem. Mater. 17 (2005) 2494—2513. https://doi.org/10.1021/cm047908z.

J.C. Groen, J.A. Moulijn, J. Pérez-Ramírez, J. Mater. Chem. 16 (2006) 2121—2131. https://doi.org/10.1039/B517510K.

D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol. 1 (2011) 879—890. https://doi.org/10.1039/C1CY00150G.

L. Wang, Y. Wang, A. Wang, X. Li, F. Zhou, Y. Hu, Microporous Mesoporous Mater. 180 (2013) 242—249. http://doi.org/10.1016/j.micromeso.2013.06.029.

C. Perego, S. Amarilli, R. Millini, G. Bellussi, G. Girotti, G. Terzoni, Microporous Mater. 6 (1996) 395—404. https://doi.org/10.1016/0927-6513(96)00037-5.

R. Millini, F. Frigerio, G. Bellussi, G. Pazzucconi, C. Perego, P. Pollesel, U. Romano, J. Catal. 217 (2003) 298—309. https://doi.org/10.1016/S0021-9517(03)00071-X.

E.R. Rosinski, M.K. Rubin, US 3832449 (1974).

L.T. Nemeth, G.F. Maher, US 6872866B1 (2005).

B.H. Chiche, R. Dutartre, F. Di Renzo, F. Fajula, A. Katovic, A. Regina, G. Giordano, Catal. Lett. 31 (1995) 359—366. https://doi.org/10.1007/BF00808600.

S. Akyalcin, L. Akyalcin, M. Bjørgen, Microporous Mesoporous Mater. 273 (2019) 256—264. https://doi.org/10.1016/j.micromeso.2018.07.014.

S. Gopal, K. Yoo, P.G. Smirniotis, Microporous Mesoporous Mater. 49 (2001) 149—156. https://doi.org/10.1016/S1387-1811(01)00412-7.

Y. Hou, N. Wang, J. Zhang, W. Qian, RSC Adv. 7 (2017) 14309—14313. https://doi.org/10.1039/C6RA28844H.

D. Karabulut, S. Akyalcin, Int. J. Chem. React. Eng. 19 (2021) 541—551. https://doi.org/10.1515/ijcre-2020-0175.

X. Wei, P.G. Smirniotis, Microporous Mesoporous Mater. 97 (2006) 97—106. https://doi.org/10.1016/j.micromeso.2006.01.024.

A.L. Patterson, Phys. Rev. 56 (1939) 978. https://doi.org/10.1103/PhysRev.56.978.

K.T.G. Carvalho, E.A. Urquieta-Gonzalez, Catal. Today 243 (2015) 92—102. http://doi.org/10.1016/j.cattod.2014.09.025.

K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603—619. http://doi.org/10.1351/pac198557040603.

J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Pérez-Ramírez, Colloids Surf., A 241 (2004) 53—58. https://doi.org/10.1016/j.colsurfa.2004.04.012.

J.C. Groen, J.C. Jansen, J.A. Moulijn, J. Pérez-Ramírez, J. Phys. Chem. B 108 (2004) 13062—13065. https://doi.org/10.1021/jp047194f.

Q. Wang, Z.M. Cui, C.Y. Cao, W.G. Song, J. Phys. Chem. C 115 (2011) 24987—24992. https://doi.org/10.1021/jp209182u.

U.V. Mentzel, K.T. Højholt, M.S. Holm, R. Fehrmann, P. Beato, Appl. Catal., A 417–418 (2012) 290—297. https://doi.org/10.1016/j.apcata.2012.01.003.

M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K. P. Lillerud, S. Svelle, Appl. Catal., A 345 (2008) 43—50. https://doi.org/10.1016/j.apcata.2008.04.020.

K. Sadowska, A. Wach, Z. Olejniczak, P. Kustrowski, J. Datka, Microporous Mesoporous Mater. 167 (2013) 82—88. https://doi.org/10.1016/j.micromeso.2012.03.045.

S.J. You, E.D. Park, Microporous Mesoporous Mater. 186 (2014) 121—129. http://doi.org/10.1016/j.micromeso.2013.11.042.

S. Svelle, L. Sommer, K. Barbera, P.N.R. Vennestrøm, U. Olsbye, K.P. Lillerud, S. Bordiga, Y.H. Pan, P. Beato, Catal. Today 168 (2011) 38—47. https://doi.org/10.1016/j.cattod.2010.12.013.

X. Zeng, Z. Wang, J. Ding, L. Wang, Y. Jiang, C. Stampfl, M. Hunger, J. Huang, J. Catal. 380 (2019) 9—20. https://doi.org/10.1016/j.jcat.2019.09.035.

M. Milina, S. Mitchell, Z.D. Trinidad, D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol. 2 (2012) 759—766. https://doi.org/10.1039/C2CY00456A.

H.S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, Englewood Cliffs, NJ, USA (1999). ISBN 0-13-531708-8.

N. Narender, K.V.V. Krishna Mohan, S.J. Kulkarni, I. Ajit Kumar Reddy, Catal. Commun. 7 (2006) 583—588. https://doi.org/10.1016/j.catcom.2006.01.013.

K. Yoo, P.G. Smirniotis, Appl. Catal., A 246 (2003) 243—251. https://doi.org/10.1016/S0926-860X(03)00026-7.

J.C. Kim, K. Cho, R. Ryoo, Appl. Catal., A 470 (2014) 420—426. https://doi.org/10.1016/j.apcata.2013.11.019.

D.S.A. Silva, W.N. Castelblanco, D.H. Piva, V. Macedo, K.T.G. Carvalho, E.A. Urquieta-González, Mol. Catal. 492 (2020) 111026. https://doi.org/10.1016/j.mcat.2020.111026.

J. Shao, T. Fu, Z. Ma, C. Zhang, H. Li, L. Cui, Z. Li, Catal. Sci. Technol. 9 (2019) 6647—6658. https://doi.org/10.1039/C9CY01053J.

G. Cruciani, J. Phys. Chem. Solids 67 (2006) 1973—1994. https://doi.org/10.1016/j.jpcs.2006.05.057.