Main Article Content

Saman Khawaja
Muhammad Rashid Usman
Rabya Aslam


The present study conceptualizes and simulates a methanol production process through the direct hydrogenation of captured CO2. CuO/ZnO/ZrO2 was employed as the catalyst and Aspen HYSYS was used for the process simulation. Configurational optimization of the process flowsheet was carried out using a step-by-step hierarchical approach. Many alternate flowsheets have resulted, and their capital investment, product cost, and profitability measures were calculated. The discrimination among the competing flowsheets was carried out based on net profit and percent return on investment. The retained flowsheet was further analyzed for optimizing the recycle ratio and evaluating the effect of the price of captured CO2, green H2, natural gas (fuel), and catalyst on the economic performance of the plant. The optimum value of the recycle ratio was computed to be 4.23. Additionally, it was found that the price of H2 is the most important parameter in defining the feasibility and profitability of the process. Mathematical correlations were also developed that relate the profitability and price of the above-mentioned feed materials.

Article Details

How to Cite
Khawaja, S. ., Usman, M. R. ., & Aslam, R. . (2024). CONCEPTUALIZATION AND PROCESS SIMULATION OF A CO2-BASED METHANOL PRODUCTION PLANT: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(4), 309–323.


BP, bp Statistical Review of World Energy 2022, Seventy-first ed., 2022.

Z. Liu, Z. Deng, S.J. Davis, C. Giron, P. Ciais, Nat. Rev. Earth Environ. 3 (2022) 217—219.

Y. Gao, X. Gao, X., Zhang, Engineering 3 (2017) 272—278.

G.A. Olah, Angew. Chem. Int. 44 (2005) 2636—2639.

U.J. Etim, Y. Song, Z. Zhong, Front. Energy Res. (2020) 545431.

M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abil-Pedersen et al., Science 336 (2012) 893—897.

K. Stangeland, H. Li, Z. Yu, Energy, Ecol. Environ 5 (2020) 272—285.

D.S. Marlin, E. Sarron, Ö. Sigurbjörnsson, Front. Chem. 6 (2018) 446.

M. Bukhtiyarova, T. Lunkenbein, K. Kähler, R. Schlögl, Catal. Lett. 147 (2017) 416—427.

E.S. Van-Dal, C. Bouallou, J. Clean. Prod. 57 (2013) 38—45.

M. Matzen, M. Alhajji, Y. Demirel, Energy 93 (2015) 343—353.

M. Pérez-Fortes, J.C. Schöneberger, A. Boulamanti, E. Tzimas, Appl. Energy 161 (2016) 718—732.

I.L. Wiesberg, J.L. de Medeiros, R.M.B. Alves, P.L.A. Coutinho, O.Q.F. Araújo, Energy Convers. Manage. 125 (2016) 320—335.

P. Borisut, A. Nuchitprasittichai, Front. Energy Res. 7 (2019) 81.

A.A. Kiss, J.J. Pragt, H.J. Vos, G. Bargeman, M.T. de Groot, Chem. Eng. J. 284 (2016) 260—269.

K. Roh, R. Frauzem, R. Gani, J.H. Lee, Chem. Eng. Res. Des. 116 (2016) 27—47.

M. Martín, I.E. Grossmann, Comput. Chem. Eng. 105 (2017) 308—316.

S. Alsayegh, J.R. Johnson, B. Ohs, M. Wessling, J. Clean. Prod. 208 (2018) 1446—1458.

S. Szima, C.C. Cormos, J. CO2 Utilization 24 (2018) 555—563.

N. Meunier, R. Chauvy, S. Mouhoubi, D. Thomas, G. De Weireld, Renewable Energy 146 (2020) 1192—1203.

T.B.H. Nguyen, E. Zondervan, J. CO2 Util. 34 (2019) 1—11.

H.W. Lee, K. Kyeongsu, J. An, J. Na, H. Kim, H. Lee, U. Lee, Energy Res. 44 (2020) 8781—8798. O. Campos, K. John, P. Beeskow, K.H. Herrera Delgado, S. Pitter, N. Dahmen, et al., Processes 10 (2022) 1535.

T. Cordero-Lanzac, A. Ramirez, A. Navajas, L. Gevers, S. Brunialti, L.M. Gandía, et al. J. Energy Chem. 68 (2022) 255—266.

M. Yousaf, A. Mahmood, A. Elkamel, M. Rizwan, M. Zaman, Int. J. Greenhouse Gas Control 115 (2022) 103615.

F. Haghighatjoo, M.R. Rahimpour, M. Farsi, Chem. Eng. Process. 184 (2023) 109264.

H.H. Chiou, C-J. Lee, B-S. Wen, J-X. Lin, C-L Chen, B.Y Yu, Fuel 343 (2023) 127856.

J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, New York (1988). ISBN-13: 978-0071001953.

Mitsubishi Power, Gas Turbine Combined Cycle (GTCC) Power Plants. [accessed 01 August 2023].

M.A. Sheikh, Renewable Sustainable Energy Rev. 13 (2009) 2696—2702.

W.A. Poe, S. Mokhatab, Modeling, Control, and Optimization of Natural Gas Processing Plants, Gulf Professional Pub., New York (2017).

S.O. Akpasi, Y.M. Isa, Atmosphere 13 (2022) 1958.

S.S. Kumar, V. Himabindu, Mater. Sci. Energy. Technol. 2 (2019) 442—454.

S. Lipiäinen, K. Lipiäinen, A. Ahola A., E. Vakkilainen, Int. J. Hydrogen Energy (2023).

G. Leonzio, E. Zondervan, P.U. Foscolo, Int. J. Hydrogen Energy 44 (2019) 7915—7933.

J. Zhang, Z. Li, Z. Zhang, R. Liu, B. Chu, B. Yan, ACS Sustainable Chem. Eng. 8 (2020) 49.

M.R. Usman, Z. Shahid, M.S. Akram, R. Aslam, Int. J. Thermophys. (2020) 41:44.

F. Arena, G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri, L. Spadaro, J. Catal. 30 (2013) 141—151.

C. Yang, Z. Ma, N. Zhao, W. Wei, T. Hu, Y. Sun, Catal. Today 115 (2006) 222—227.

M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, fifth ed., McGraw-Hill, New York (2003). ISBN-13:‎ 978-0071240444.

W.D. Seider, D.R. Lewin, J.D. Seader, S. Widagdo, R. Gani, K.M. NG, Product and Process Design Principles: Synthesis, Analysis, and Evaluation, fourth ed., John Wiley & Sons, Inc. (2017). ISBN: 978-1119282631.

Y. Feng, G.P. Rangaiah, Chem. Eng. August (2011) 22—29.

R. Sinnott, G. Towler, Chemical Engineering Design, sixth ed., Butterworth-Heinemann (2020). ISBN: 978-0081025994.

C.R. Branan, Rules of Thumb for Chemical Engineers, fourth ed., Gulf Professional Pub., New York (2005).

R.N. Watkins, Hydrocarbon Process. 46 (1967) 253—256.

P.C. Wankat, Separation Process Engineering: Includes Mass Transfer Analysis, third ed., Pearson Education, Inc., New York (2012). ISBN: 978-0131382275.

G.D. Ulrich, P.T. Vasudevan, Chem. Eng. April (2006).

B. Bane, Cheaper carbon capture is on the way. PNNL, March 2021. [accessed 11 August 2023].

S.R. Bhagwat, M. Olczak, Green hydrogen bridging the energy transition in Africa and Europe. European University Institute (2020).

Markets Energy, [accessed 16 April 2022].

C. Bettenhausen, Chem. Eng. News 101 (2023). [accessed 20 January 2024].

ChemAnalyst, Methanol Price Trend and Forecast. [accessed 11 August 2023].