Investigating the acidity effect of niobia as catalytic support for furfural conversion

Original scientific paper

Authors

  • Mayra Martinelli Costa Laboratory of Catalytic Process Engineering and Biorefineries, Department of Process Engineering, School of Chemical Engineering, Universidade Estadual de Campinas (UNICAMP), Av. Albert Einstein, 500 - Cidade Universitária, Campinas, SP, Brazil. CEP: 13083-852
  • Eduarda Caroline Duarte Amatte Coelho Laboratory of Catalytic Process Engineering and Biorefineries, Department of Process Engineering, School of Chemical Engineering, Universidade Estadual de Campinas (UNICAMP), Av. Albert Einstein, 500 - Cidade Universitária, Campinas, SP, Brazil. CEP: 13083-852
  • Silvia Fernanda Moya oratory of Catalytic Process Engineering and Biorefineries, Department of Process Engineering, School of Chemical Engineering, Universidade Estadual de Campinas (UNICAMP), Av. Albert Einstein, 500 - Cidade Universitária, Campinas, SP, Brazil. CEP: 13083-852
  • Raphael Soeiro Suppino Laboratory of Catalytic Process Engineering and Biorefineries, Department of Process Engineering, School of Chemical Engineering, Universidade Estadual de Campinas (UNICAMP), Av. Albert Einstein, 500 - Cidade Universitária, Campinas, SP, Brazil. CEP: 13083-852

DOI:

https://doi.org/10.2298/CICEQ241019013C

Keywords:

Hydrogenation, biorefinery, metallic loading, nickel, niobium oxide, difurfuryl ether

Abstract

As niobia (Nb2O5) is an accessible acid support in Brazil, the objective of this work was to evaluate the effect of acidity in Ni/Nb2O5 catalysts for the hydrogenation of furfural in liquid phase. Catalysts with 5, 10 and 15 wt% Ni content were prepared by wet impregnation, activated under H2 flow, and tested in furfural hydrogenation at 150°C and 5 MPa of H2. N2 physisorption results suggest pore blocking on the support as the amount of Ni increased. The larger crystallites identified in XRD for 15% Ni/Nb2O5 probably favored pore blocking, and the atomic composition in EDS versus XPS indicates a lower metallic dispersion for this solid. TPR and XPS results suggest all Ni catalysts are primarily constituted of reduced Ni species, while TPD-NH3 confirms that the acidity of the support was passed on to the catalysts. The 15 wt% Ni solid led to a slight decrease in activity, which can be related to its lower dispersion. Catalysts proved to be promising in terms of selectivity to furfuryl alcohol, which remained between 60 and 80% throughout the reaction. Also, acid sites-derived product difurfuryl ether was produced with all catalysts, and can be an interesting addition to the biorefineries portfolio.

References

[1] I. Ahmed, M.A. Zia, H. Afzal, S. Ahmed, M. Ahmad, Z. Akram, F. Sher, H.M.N. Iqbal, Sustainability (Switzerland) 13 (2021) 1–32. https://doi.org/10.3390/su13084200.

[2] S.S. Hassan, G.A. Williams, A.K. Jaiswal, Renewable Sustainable Energy Rev. 101 (2019) 590–599. https://doi.org/10.1016/j.rser.2018.11.041.

[3] B. Kumar, P. Verma, Fuel 288 (2021) 119622. https://doi.org/10.1016/j.fuel.2020.119622.

[4] E. Scopel, C.A. Rezende, Ind. Crops. Prod. 163 (2021) 113336. https://doi.org/10.1016/j.indcrop.2021.113336.

[5] C.B.T.L. Lee, T.Y. Wu, Renewable Sustainable Energy Rev. 137 (2021) 110172. https://doi.org/10.1016/j.rser.2020.110172.

[6] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. López Granados, Energy Environ. Sci. 9 (2016) 1144–1189. https://doi.org/10.1039/C5EE02666K.

[7] M. Ghashghaee, S. Shirvani, V. Farzaneh, S. Sadjadi, Braz. J. Chem. Eng. 35 (2018) 669–678. https://doi.org/10.1590/0104-6632.20180352s20160703.

[8] J.F.L. Silva, M.A. Selicani, T.L. Junqueira, B.C. Klein, S. Vaz Júnior, A. Bonomi, Braz. J. Chem. Eng. 34 (2017) 623–634. https://doi.org/10.1590/0104-6632.20170343s20150643.

[9] M.L. Testa, M.L. Tummino, Catalysts 11 (2021) 1–27. https://doi.org/10.3390/catal11010125.

[10] K. Yan, G. Wu, T. Lafleur, C. Jarvis, Renewable Sustainable Energy Rev. 38 (2014) 663–676. https://doi.org/10.1016/J.RSER.2014.07.003.

[11] P. Khemthong, C. Yimsukanan, T. Narkkun, A. Srifa, T. Witoon, S. Pongchaiphol, S. Kiatphuengporn, K. Faungnawakij, Biomass Bioenergy 148 (2021) 106033. https://doi.org/10.1016/j.biombioe.2021.106033.

[12] H. Tian, G. Gao, Q. Xu, Z. Gao, S. Zhang, G. Hu, L. Xu, X. Hu, Mol. Catal. 510 (2021) 111697. https://doi.org/10.1016/j.mcat.2021.111697.

[13] Z. Zhang, K. Sun, Y. Ma, Q. Liu, Q. Li, S. Zhang, Y. Wang, Q. Liu, D. Dong, X. Hu, Catal. Sci. Technol. 9 (2019) 4510–4514. https://doi.org/10.1039/c9cy00985j.

[14] A. Florentino, P. Cartraud, P. Magnoux, M. Guisnet, Appl. Catal., A 89 (1992) 143–153. https://doi.org/10.1016/0926-860X(92)80229-6.

[15] U.S. Geological Survey, Mineral Commodity Summaries, Virginia (2019). https://doi.org/10.3133/70202434.

[16] S. Kang, R. Miao, J. Guo, J. Fu, Catal. Today 374 (2021) 61–76. https://doi.org/10.1016/j.cattod.2020.10.029.

[17] L.F. de Lima, J.L.M. Lima, D.S.S. Jorqueira, R. Landers, S.F. Moya, R.S. Suppino, React. Kinet., Mech. Catal. 132 (2021) 73–92. https://doi.org/10.1007/s11144-021-01931-y.

[18] K. Skrodczky, M.M. Antunes, X. Han, S. Santangelo, G. Scholz, A.A. Valente, N. Pinna, P.A. Russo, Commun. Chem. 2 (2019) 1–11. https://doi.org/10.1038/s42004-019-0231-3.

[19] J.L. Vieira, G. Paul, G.D. Iga, N.M. Cabral, J.M.C. Bueno, C. Bisio, J.M.R. Gallo, Appl. Catal., A 617 (2021) 118099. https://doi.org/10.1016/j.apcata.2021.118099.

[20] T. Iizuka, K. Ogasawara, K. Tanabe, Bull. Chem. Soc. Jpn. 56 (1983) 2927–2931. https://doi.org/10.1246/bcsj.56.2927.

[21] R.S. Suppino, R. Landers, A.J.G. Cobo, Appl. Catal., A 452 (2013) 9–16. https://doi.org/10.1016/j.apcata.2012.11.034.

[22] R.S. Suppino, R. Landers, A.J.G. Cobo, Appl. Catal., A 525 (2016) 41–49. https://doi.org/10.1016/j.apcata.2016.06.038.

[23] M. Kosmulski, Adv. Colloid Interface Sci. 238 (2016) 1–61. https://doi.org/10.1016/j.cis.2016.10.005.

[24] G. Ertl, H. Knözinger, F. Schüth, Handbook of heterogeneous catalysis, Wiley-VCH, Weinheim (2008) p.746.

[25] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.

[26] R. Brayner, F. Bozon-Verduraz, Phys. Chem. Chem. Phys. 5 (2003) 1457–1466. https://doi.org/10.1039/b210055j.

[27] K.M.A. Santos, E.M. Albuquerque, L.E.P. Borges, M.A. Fraga, Mol. Catal. 458 (2018) 198–205. https://doi.org/10.1016/j.mcat.2017.12.010.

[28] F. Huber, Z. Yu, S. Lögdberg, M. Rønning, D. Chen, H. Venvik, A. Holmen, Catal. Lett. 110 (2006) 211–220. https://doi.org/10.1007/s10562-006-0111-1.

[29] R.S. Suppino, R. Landers, A.J.G. Cobo, React. Kinet., Mech. Catal. 114 (2015) 295–309. https://doi.org/10.1007/s11144-014-0790-3.

[30] S. Jantarang, E.C. Lovell, T.H. Tan, J. Scott, R. Amal, Prog. Nat. Sci.: Mater. Int. 28 (2018) 168–177. https://doi.org/10.1016/j.pnsc.2018.02.004.

[31] National Institute of Standards and Technology, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20 (2012). http://dx.doi.org/10.18434/T4T88K.

[32] P. Berteau, B. Delmon, Catal. Today 5 (1989) 121–137. https://doi.org/10.1016/0920-5861(89)80020-3.

[33] V.M. Benitez, S.P. de Lima, M. do Carmo Rangel, D. Ruiz, P. Reyes, C.L. Pieck, Catal. Today 289 (2017) 53–61. https://doi.org/10.1016/j.cattod.2016.10.004.

[34] H. Guo, F. Zaera, Surf. Sci. 524 (2003) 1–14. https://doi.org/10.1016/S0039-6028(02)02486-X.

[35] A.M. Robinson, J.E. Hensley, J.W. Medlin, ACS Catal. 6 (2016) 5026–5043. https://doi.org/10.1021/acscatal.6b00923.

[36] F. Li, W. Zhu, S. Jiang, Y. Wang, H. Song, C. Li, Int. J. Hydrogen Energy 45 (2019) 1981–1990. https://doi.org/10.1016/j.ijhydene.2019.11.139.

[37] A. Aldureid, F. Medina, G.S. Patience, D. Montané, Catalysts 12 (2022) 390. https://doi.org/10.3390/catal12040390.

[38] M.A. Jackson, M.G. White, R.T. Haasch, S.C. Peterson, J.A. Blackburn, Mol. Catal. 445 (2018) 124–132. https://doi.org/10.1016/j.mcat.2017.11.023.

[39] Á. O’Driscoll, J.J. Leahy, T. Curtin, Catal. Today 279 (2017) 194–201. https://doi.org/10.1016/j.cattod.2016.06.013

[40] S. Yang, Y. Hao, J. Wang, H. Wang, Y. Zheng, H. Tian, Sci. Rep. 7 (2017) 12954. https://doi.org/10.1038/s41598-017-13472-3.

Published

03.06.2025

Issue

Section

Articles

How to Cite

Investigating the acidity effect of niobia as catalytic support for furfural conversion: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ241019013C

Funding data

Similar Articles

1-10 of 23

You may also start an advanced similarity search for this article.