EFFECTS OF MICROALGAL CONCENTRATION AND pH WITH FLOCCULANT ON MICROFILTRATION Original scientific paper

Main Article Content

Ana Luiza Mendes
Daimon Jefferson Jung de Oliveira
Thamayne Valadares de Oliveira
https://orcid.org/0000-0003-0896-6363
Fernando Augusto Pederson Voll
https://orcid.org/0000-0002-7287-268X
Rafael Bruno Vieira
https://orcid.org/0000-0003-2199-1870
Andre Bellini Mariano

Abstract

To make algal biomass a suitable feedstock for fuel and bioproducts, a practical way of dewatering and concentrating algal cells must be devised. In this study, a system comprising microfiltration membranes combined with a flocculant was developed on a low-cost ceramic substrate to harvest Tetradesmus obliquus efficiently. The effects of tannin-based flocculant concentration, microalgal concentration, and pH on microfiltration were studied. Permeate flux was evaluated for 5400 s through experiments to analyze the total resistance and the fouling mechanism. Results show that the cake filtration model best represented the data. The experiments at pH 4 and 0.06 kg/m3 of microalgae (with flocculant) showed improved results with a reduction in the J/J0 (permeate flux/initial flux) ratio of 39%. In addition, the effects of critical flux, transmembrane pressure, and fouling mechanism on microfiltration were investigated under the best conditions studied. Applying the stepping method to the critical flux yielded a permeate flux of 2.2 × 10-5 m3m−2s−1. The 70 kPa condition showed the highest permeate flux (3.0 × 10−5 m3m−2s−1) and a low cake pore blocking coefficient (k) obtained by the modified Hermia model. This study showed that Tanfloc at low pH could maximize microalgal separation in membrane processes.

Article Details

How to Cite
Mendes, A. L. ., Jung de Oliveira, D. J. ., de Oliveira, T. V. ., Pederson Voll, F. A. ., Vieira, R. B. ., & Bellini Mariano, A. . (2023). EFFECTS OF MICROALGAL CONCENTRATION AND pH WITH FLOCCULANT ON MICROFILTRATION: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(4), 253–262. https://doi.org/10.2298/CICEQ220125032M
Section
Articles

References

K.H. Min, D.H. Kim, M. Ki, S.P. Pack, Bioresour. Technol. (2021) 126404. https://doi.org/10.1016/j.biortech.2021.126404.

M.K. Danquah, L. Ang, N. Uduman, N. Moheimani, G.M. Forde, J. Chem. Technol. Biotechnol. 84 (2009) 1078—1083. https://doi.org/10.1002/jctb.2137.

S. Jiang, Y. Zhang, F. Zhao, Z. Yu, X. Zhou, H. Chu, Algal Res. 35 (2018) 613—623. https://doi.org/10.1016/j.algal.2018.10.003.

Z. Zhao, A. Ilyas, K. Muylaert, I.F.J. Vankelecom, Bioresour. Technol. 309 (2020) 123367. https://doi.org/10.1016/j.biortech.2020.123367.

J.D. de Oliveira Henriques, M.W. Pedrassani, W. Klitzke, A.B. Mariano, J.V.C. Vargas, R.B. Vieira, Appl. Clay Sci. 150 (2017) 217—224. https://doi.org/10.1016/j.clay.2017.09.017.

R.H.R. Hanashiro, C.B. Stoco, T. V de Oliveira, M.K. Lenzi, A.B. Mariano, R.B. Vieira, Can. J. Chem. Eng. 0 (2019). https://doi.org/10.1002/cjce.23467.

D. Vandamme, I. Foubert, K. Muylaert, Trends Biotechnol. 31 (2013) 233—239. https://doi.org/10.1016/j.tibtech.2012.12.005.

Z. Zhao, K. Muylaert, I.F.J. Vankelecom, Water Res. 198 (2021) 117181. https://doi.org/10.1016/j.watres.2021.117181.

Z. Zhao, Y. Li, K. Muylaert, I.F.J. Vankelecom, Sep. Purif. Technol. 240 (2020) 116603. https://doi.org/10.1016/j.seppur.2020.116603.

V. Discart, M.R. Bilad, R. Moorkens, H. Arafat, I.F.J. Vankelecom, Algal Res. 9 (2015) 55—64. https://doi.org/10.1016/j.algal.2015.02.029.

F. Roselet, D. Vandamme, M. Roselet, K. Muylaert, P.C. Abreu, Bioenergy Res. 10 (2017) 427—437. https://doi.org/10.1007/s12155-016-9806-3.

A.I. Barros, A.L. Gonçalves, M. Simões, J.C.M. Pires, Renew. Sustain. Energy Rev. 41 (2015) 1489—1500. https://doi.org/10.1016/j.rser.2014.09.037.

G. Kandasamy, S.R.M. Shaleh, Appl. Biochem. Biotechnol. 182 (2017) 586—597. https://doi.org/10.1007/s12010-016-2346-7.

N.F.H. Selesu, T. V. de Oliveira, D.O. Corrêa, B. Miyawaki, A.B. Mariano, J.V.C. Vargas, R.B. Vieira, Can. J. Chem. Eng. 94 (2016) 304—309. https://doi.org/10.1002/cjce.22391.

T. Nishimura, G.V. Garcia Lesak, L. Alves Xavier, R. Bruno Vieira, A. Bellin Mariano, Chem. Eng. Technol. 45 (2022) 230—237. https://doi.org/10.1002/ceat.202100490.

R. Gutiérrez, F. Passos, I. Ferrer, E. Uggetti, J. García, Algal Res. 9 (2015) 204—211. https://doi.org/10.1016/j.algal.2015.03.010.

C. Wan, M.A. Alam, X.Q. Zhao, X.Y. Zhang, S.L. Guo, S.H. Ho, J.S. Chang, F.W. Bai, Bioresour. Technol. 184 (2015) 251—257. https://doi.org/10.1016/j.biortech.2014.11.081.

M. Mouiya, A. Abourriche, A. Bouazizi, A. Benhammou, Y. El Hafiane, Y. Abouliatim, L. Nibou, M. Oumam, M. Ouammou, A. Smith, H. Hannache, Desalination. 427 (2018) 42—50. https://doi.org/10.1016/j.desal.2017.11.005.

J.D.D.O. Henriques, M.W. Pedrassani, W. Klitzke, T.V. De Oliveira, P.A. Vieira, A.B. Mariano, R.B. Vieira, Rev. Mater. 24 (2019). https://doi.org/10.1590/s1517-707620190004.0826.

W. de Melo, G.V.G. Lesak, T.V. de Oliveira, F.A.P. Voll, A.F. Santos, R.B. Vieira, Mater. Res. 25 (2022). https://doi.org/10.1590/1980-5373-mr-2021-0365.

F. Wicaksana, A.G. Fane, P. Pongpairoj, R. Field, J. Memb. Sci. 387–388 (2012) 83—92. https://doi.org/10.1016/j.memsci.2011.10.013.

G. Singh, S.K. Patidar, J. Environ. Manage. 217 (2018) 499—508. https://doi.org/10.1016/j.jenvman.2018.04.010.

M.T. Alresheedi, O.D. Basu, B. Barbeau, Chemosphere. 226 (2019) 668—677. https://doi.org/10.1016/j.chemosphere.2019.03.188.

J. Luo, S.T. Morthensen, A.S. Meyer, M. Pinelo, J. Memb. Sci. 469 (2014) 127—139. https://doi.org/10.1016/j.memsci.2014.06.024.

D.O. Corrêa, B. Santos, F.G. Dias, J.V.C. Vargas, A.B. Mariano, W. Balmant, M.P. Rosa, D.C. Savi, V. Kava, C. Glienke, J.C. Ordonez, Int. J. Hydrogen Energy. 42 (2017) 21463—21475. https://doi.org/10.1016/j.ijhydene.2017.05.176.

L.A. Xavier, T.V. de Oliveira, W. Klitzke, A.B. Mariano, D. Eiras, R.B. Vieira, Appl. Clay Sci. 168 (2019) 260—268. https://doi.org/10.1016/j.clay.2018.11.025.

M. Mänttäri, M. Nyström, J. Memb. Sci. 170 (2000) 257—273. https://doi.org/10.1016/S0376-7388(99)00373-7.

B.G. Choobar, M.A. Alaei Shahmirzadi, A. Kargari, M. Manouchehri, J. Environ. Chem. Eng. 7 (2019) 103030. https://doi.org/10.1016/j.jece.2019.103030.

M.J. Corbatón-Báguena, M.C. Vincent-Vela, J.M. Gozálvez-Zafrilla, S. Álvarez-Blanco, J. Lora-García, D. Catalán-Martínez, Sep. Purif. Technol. 170 (2016) 434—444. https://doi.org/10.1016/j.seppur.2016.07.007.

M.C. Vincent Vela, S. Álvarez Blanco, J. Lora García, E. Bergantiños Rodríguez, Chem. Eng. J. 149 (2009) 232—241. https://doi.org/10.1016/j.cej.2008.10.027.

E.M. Bainy, E.K. Lenzi, M.L. Corazza, M.K. Lenzi, Therm. Sci. 21 (2017) 41—50. https://doi.org/10.2298/TSCI160422241B.

J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, Desalination. 235 (2009) 102—109. https://doi.org/10.1016/j.desal.2008.01.013.

L. Brennan, P. Owende, Renew. Sustain. Energy Rev. 14 (2010) 557—577. https://doi.org/10.1016/j.rser.2009.10.009.

S. Laksono, I.M.A. ElSherbiny, S.A. Huber, S. Panglisch, Chem. Eng. J. 420 (2021) 127723. https://doi.org/10.1016/j.cej.2020.127723.

H. Salehizadeh, N. Yan, Biotechnol. Adv. 32 (2014) 1506—1522. https://doi.org/10.1016/j.biotechadv.2014.10.004.

U. Suparmaniam, M. Kee, Y. Uemura, J. Wei, K. Teong, S. Hoong, Renew. Sustain. Energy Rev. 115 (2019) 109361. https://doi.org/10.1016/j.rser.2019.109361.

M.R. Bilad, V. Discart, D. Vandamme, I. Foubert, K. Muylaert, I.F.J. Vankelecom, Bioresour. Technol. 138 (2013) 329—338. https://doi.org/10.1016/j.biortech.2013.03.175.

R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, J. Memb. Sci. 100 (1995) 259—272. https://doi.org/10.1016/0376-7388(94)00265-Z.

T. De Baerdemaeker, B. Lemmens, C. Dotremont, J. Fret, L. Roef, K. Goiris, L. Diels, Bioresour. Technol. 129 (2013) 582—591. https://doi.org/10.1016/j.biortech.2012.10.153.

P. Le Clech, B. Jefferson, I.S. Chang, S.J. Judd, J. Memb. Sci. 227 (2003) 81—93. https://doi.org/10.1016/j.memsci.2003.07.021.

R.W. Field, G.K. Pearce, Adv. Colloid Interface Sci. 164 (2011) 38—44. https://doi.org/10.1016/j.cis.2010.12.008.