OPTIMAL DISSOLUTION AND VISCOELASTIC BEHAVIOR OF POLYAMIDE-66 IN FORMIC ACID FOR MEMBRANE FABRICATION Scientific paper

Main Article Content

Abulhassan Ali
https://orcid.org/0000-0002-3622-0617
Khuram Maqsood
Aymn Abdulrahman
Ahmed S. Alsaadi
Abdullah Bin Mahfouz

Abstract

High-performance polymeric membrane technology is rapidly developing worldwide with the introduction of new materials and processes. Considerable research efforts are being made to establish a polymer membrane that can be used for ultrafiltration (UF) or nanofiltration (NF) applications. The development of modified polyamide-66 polymer and its compatibility in wastewater are essential elements in the quest for advances and improvements in membrane technology. The optimized conditions for membrane synthesis are critical in making it commercially viable. Response Surface Methodology (RSM) was used to find the optimum dissolution of polyamide-66 in formic acid. A model was developed and validated with experimental data, and it showed good agreement with R2 0.9984. The optimized condition for minimizing viscosity was determined. For minimum viscosity (3.64 cp), the optimum temperature and wt.% were 20 °C and 0.6, respectively.

Article Details

How to Cite
Ali, A., Maqsood, K., Abdulrahman, A., Alsaadi, A. S., & Bin Mahfouz, A. (2022). OPTIMAL DISSOLUTION AND VISCOELASTIC BEHAVIOR OF POLYAMIDE-66 IN FORMIC ACID FOR MEMBRANE FABRICATION: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 28(3), 203–209. https://doi.org/10.2298/CICEQ210320032A
Section
Articles

References

H.H. Wang, J.T. Jung, J.F. Kim, S. Kim, E. Drioli, Y.M. Lee, J. Membr. Sci. 574 (2019) 44-54.

H.B. Kostenbauder, H.G. Boxenbaum, P.P. Deluca, J. Pharm. Sci. 58 (1969) 753-757.

A. Al Mayyahi, Membranes 8 (2018) 68.

K.P. Lee, T.C. Arnot, D. Mattia, J. Membr. Sci. 370 (2011) 1-22.

B. Tarboush, D. Rana, T. Matsuura, H. Arafat, R. Narbaitz, J. Membr. Sci. 325 (2008) 166-175.

L. Li, S. Zhang, X. Zhang, G. Zheng, J. Membr. Sci. 289 (2007) 258-267.

S. Peng, L. Peng, C. Yi, W. Zhang, X. Wang, J. Polym. Sci., Part A: Polym. Chem. 56 (2018) 959-967.

J. Chen, C. Gong, C. Yang, C. Yi, J. Mater. Sci. 56 (2021) 12018-12029.

T.-S.N. Chung, Fabrication of Hollow-Fiber Membranes by Phase Inversion, Advanced Membrane Technology and Applications 2008, pp. 821-839.

P.R. Saunders, J. Polym. Sci. 57 (1962) 131-139.

M.A. Aroon, A.F. Ismail, M.M. Montazer-Rahmati, T. Matsuura, Sep. Purif. Technol. 72 (2010) 194-202.

P.R. Saunders, J. Polym. Sci. 43 (1960) 273-275.

D. Hou, H. Fan, Q. Jiang, J. Wang, X. Zhang, Sep. Purif. Technol. 135 (2014) 211-222.

A. Idris, I. Ahmed, J. Appl. Polym. Sci. 108 (2008) 302-307.

I. Alghoraibi, Int. J. Chemtech Res. 7 (2014) 20-27.

N. Li, Y. Hu, Y.-Z. Lu, R.J. Zeng, G.-P. Sheng, Sci. Rep. 6 (2016) 26115.

O. Chavalparit, M. Ongwandee, J. Environ. Sci. 21 (2009) 1491-1496.

S. Opricovic, G.-H. Tzeng, Eur. J. Oper. Res. 156 (2004) 445-455.

M. Behzadian, R.B. Kazemzadeh, A. Albadvi, M. Aghdasi, Eur. J. Oper. Res. 200 (2010) 198-215.

G.E. Box, N.R. Draper, Empirical Model-building and Response Surfaces, John Wiley & Sons, New York (1987).

A.I. Khuri, S. Mukhopadhyay, WIREs Comput. Stat. 2 (2010) 128-149.

A. Abdulrahman, A. Ali, A. Alfazazi, Arab. J. Sci. Eng. 46 (2021) 6609-6617.

R. Lin, G. Yin, Contemp. Clin. Trials 44 (2015) 33-35.

S.E.I. Lebouachera, M.A. Ghriga, G.B. Salha, H.E. Hadri, M. Hasanzadeh, N. Drouiche, S. Reynaud, B. Grassl, J. Polym. Res. 28 (2021) 135.

H. Abadikhah, F. Zokaee Ashtiani, A. Fouladitajar, Desalination Water Treat. 56 (2015) 2783-2796.

N. Lashari, T. Ganat, D. Otchere, S. Kalam, I. Ali, J. Pet. Sci. Eng. 205 (2021) 108800.

D. Asante-Sackey, S. Rathilal, L. V. Pillay, E. Kweinor Tetteh, Processes 8 (2020) 160.