Involvement of aminoalkylated merrifield resins retracted by bis(chlorodiethyl) ether in metal extraction

Original scientific paper

Authors

  • Marwa Mrabet Laboratory of Organic Synthesis, Faculty of Sciences Bizerte, University of Carthage, Bizerte, 7021 Jarzouna, Bizerte, Tunisia
  • Adnen Mabrouki Laboratory of Organic Synthesis, Faculty of Sciences Bizerte, University of Carthage, Bizerte, 7021 Jarzouna, Bizerte, Tunisia
  • Fayçel Ammari Laboratory of Organic Synthesis, Faculty of Sciences Bizerte, University of Carthage, Bizerte, 7021 Jarzouna, Bizerte, Tunisia

DOI:

https://doi.org/10.2298/CICEQ240814011M

Keywords:

Merrifield resin, ethylenediamine, chlorodiethyl, metal extraction

Abstract

Merrifield resin, a cross-linked polystyrene resin with chloromethyl functional groups, is an extremely resilient material resistant to water and environmental degradation. Our objective is to develop novel substituted polymers with functional groups capable of chelating heavy metals for depollution applications. Cross-linked polymer networks, which are predominantly insoluble and adaptable to diverse chemical environments, are invaluable for pollution management. A key area of environmental significance is the selective retention of organic contaminants for purifying polluted water sources. This work focuses on creating new chelating polymeric sorbents for metal extraction by grafting ethylenediamine (EDA) and triethylenetetramine (TETA) onto Merrifield resin, resulting in two polymers: MR-EDA and MR-TETA. These modified polymers are further reticulated with bis(chlorodiethyl) ether to produce two novel reticulated polymers, MR-TETA-BCEE and MR-EDA-BCEE.To characterize the polymers, differential thermal analysis (DTA) and infrared (IR) spectroscopy are employed. The resins are subsequently tested for their ability to extract lead (Pb²⁺) and lithium (Li⁺) ions from aqueous solutions using the solid-phase extraction (SPE) method. Conductivity and atomic absorption spectrometry (AAS) analyses demonstrate high extraction efficiencies, ranging from 50% to 85% for both Pb²⁺ and Li⁺ ions. These results demonstrate the potential of MR-EDA-BCEE and MR-TETA-BCEE as effective polymeric sorbents for environmental remediation and heavy metal removal from water.

References

1. G. Pina-Luis, G.A. Rosquete Pina, A.C. Valdés Gonzaléz, A.O. Teran, I.R. Espejel, M.E. Diaz-Garcia, React. Funct. Polym. 72 (2012) 61–68. https://doi.org/10.1016/j.reactfunctpolym.2011.10.003

2. A. Sigel, H. Sigel, R.K.O. Sigel, Springer International Publishing, Basel, Switzerland (2016),1–10DOI 10.1007/978-3-319-21756-7

3. H. Zhang, J. Hou, Y. Hu, P. Wang,R. Ou, L. Jiang, J.Z. Liu, B.D. Freeman, A.J. Hill and H. Wang, Anal. Sci. Adv. 4 (2018) 0066. https://doi.org/10.1126/sciadv. aaq0066

4. L.A. Berrueta, B. Gallo, F. Vicente, j.Chromatographia 40 (1995) 474–483. https://doi.org/10.1007/BF02269916

5. M.E. Leon-Gonzale, L.V. Perez-Arribas, J. Chromatogr. A 902 (2000) 3–16. https://doi.org/10.1016/S0021-9673(00)00942-0

6. D. Sud, Ion Exchange Technology I, Springer: Dordrecht, Holland (2012), p 376. https://doi.org/10.1007/978-94-007-4375-5_13

7. R. Slimi, R. Ben Othman, N. Sleimi, A. Ouerghui, C. Girard, Polymers 8 (2016) 187-193.https://doi.org/10.3390/polym8050187

8. M.S. Lukashova, K.N. Belikov, K.Y. Bryleva, S.G. Kharckenko, S.G. Vishnevsky, V.I. Kalchenko, Adv. Funct. Mater. 23 (2016)111-119. https://doi.org/10.15407/fm23.01.111

9. S.F. Puig, L. Alberto, V.V. Becerra, A.O. Teran, A.C. Ramírez, A.V. González, Mater. Res. Express. 11 (2019) 104-115. https://doi.org/10.1088/2053-1591/ab4470

10. M. Dardouri, F. Ammari, F. Mgananem J. Polym. Sci. 6 (2015) 782841.https://doi.org/10.1155/2015/782841

11. B. Zou, S. Zhang, P. Sun, Z. Ye, Q. Zhao, W. Zhang, L. Zhou, J. Colloid Interface Sci. Commun. 40 (2021) 100349.https://doi.org/10.1016/j.colcom.2020.100349

12. G. Duan, C. Zhanfang, H. Zhong, X. Ma, S. Wang, J. Environ. Manage. 308 (2022) 114631. https://doi.org/10.1016/j.jenvman.2022.114631

13. A.L. Villa-Reyna, M. Aguilar-Martínez, A. Ochoa-Terán, H. Santacruz-Ortega, M.A. Leyva-Peralta, J.T. Vargas-Durazo, J.C. Gálvez-Ruiz, Polymers 15 (2023) 2778. https://doi.org/10.3390/polym15132778

14. R. Qu, J. Liu, C. Sun, Y. Zhang, C. Ji, P. Yin, J. Chem. Eng. 55 (2010) 4650–4659. https://doi.org/10.1021/je100246y

15. F. Mbarki, F. Ammari, A.B.H. Amor, F. Meganem, Polymery62 (2017) 109-117. https://doi.org/10.14314/polimery.2017.109

16. A. Kadous, M.A. Didi, D. Villemin, J. Radioanal. Nucl. Chem. 284 (2010) 431–438. https://doi.org/10.1007/s10967-010-0495-7

17. F. Ammari, F. Meganem, Turk. J. Chem. 38 (2014) 638-649. https://doi.org/10.3906/kim-1306-24

18. A. Ouerghui, M. Dardouri, N. Sleimimi, A. Bel Hadj Amor, F. Ammari, C. Girard, Po-limery, 64 (1), 2019, 3-11. doi: 10.11648/j.ajpst.20190503.11

19. M. Dardouri, F. Ammari, A. Bel Hadj Amor, F. Meganem, Mater. Chem. Phys., 216, 2018, 435-445. https://doi.org/10.1016/j.matchemphys.2018.06.002

Published

— Updated on 19.05.2025

Issue

Section

Articles

How to Cite

Involvement of aminoalkylated merrifield resins retracted by bis(chlorodiethyl) ether in metal extraction: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240814011M

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.