OPTIMIZATION AND EFFECT OF DIELECTRIC FLUID WITH Zr AND Ni ON ELECTRICAL DISCHARGE MACHINING OF DIE STEEL MATERIAL Original scientific paper

Main Article Content

Srinivasan Appadurai
https://orcid.org/0000-0003-1216-4945
Saravanan Kanthasamy Ganesan
https://orcid.org/0000-0002-7962-8444
Viswanathan Rangasamy
https://orcid.org/0000-0001-5007-3302
Karthikeyan Saravanan Kanakasabapathi

Abstract

This work aims to optimize the machining parameters and study the effect of powder-mixed dielectric fluid on the electrical discharge machining (EDM) process. The TOPSIS method of optimization is adopted to identify the optimal machining parameters. HCHCr die steel is preferred as a machining material. Due to their hard and ductile nature, Ni, Zr, and Ni+Zr were selected as powder inclusion in dielectric fluid. An L9 array Taguchi DOE is preferred to perform the experiments with parameters like peak off time, pulse off time, and pulse current. TOPSIS study revealed that the third level of powder dielectric fluid (Ni+Zr), 7A peak current, 9 µs pulse on time, and 2 µs pulse off time were specified as the optimal condition. Pulse on time (Ton) significantly impacted metal removal rate and surface roughness while machining operation on HCHCr die steel. SEM analysis was done to find the effect of powder-mixed dielectric fluid, while EDAX analysis was done to ensure the presence of powder inclusion.

Article Details

How to Cite
Appadurai, S. ., Ganesan, S. K. ., Rangasamy, V. ., & Kanakasabapathi, K. S. . (2023). OPTIMIZATION AND EFFECT OF DIELECTRIC FLUID WITH Zr AND Ni ON ELECTRICAL DISCHARGE MACHINING OF DIE STEEL MATERIAL: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(4), 311–318. https://doi.org/10.2298/CICEQ221215005A
Section
Articles

References

W.S. Zhao, Q.G. Meng, Z.L. Wang, J. Mat. Process. Technol. 129 (2002) 30—33. https://doi.org/10.1016/S0924-0136(02)00570-8.

P. Pecas, E. Henriques, Int. J. Mach. Tools Manuf. 43 (2003) 1465—1471. https://doi.org/10.1016/S0890-6955(03)00169-X.

K.H. Ho, S.T. Newman, Int. J. Mach. Tools Manuf. 43 (2003) 1287—1300. https://doi.org/10.1016/S0890-6955(03)00162-7.

A.Y. Joshi, A.Y. Joshi, Heliyon 5 (2019) e02963. https://doi.org/10.1016/j.heliyon.2019.e02963.

H.K. Kansal, S. Singh, P. Kumar, J. Mat. Process. Technol. 184 (2007) 32—41.

https://doi.org/10.1016/j.jmatprotec.2006.10.046.

N. Beri, S. Maheshwari, C. Sharma, A. Kumar, Int. J. Mech. Mechatron. Eng. 2 (2008) 225—229. https://doi.org/10.5281/zenodo.1327508.

S. Sharma, A. Kumar, N. Beri, D. Kumar, Int. J. Adv. Eng. Technol. 1 (2010) 13—24. https://www.technicaljournalsonline.com/ijeat/VOL%20I/IJAET%20VOL%20I%20ISSUE%20III%20OCTBER%20DECEMBER%202010/IJAET%20OCT-DEC,2010%20ARTICLE%202.pdf.

J.H. Jung, W.T. Kwon, J. Mech. Sci. Technol. 24 (2010) 1083—1090. https://doi.org/10.1007/s12206-010-0305-8.

K. Ojha, R.K. Garg, K.K. Singh, J. Min. Mat. Charact. Eng. 10 (2011) 1087—1102. https://doi.org/10.4236/jmmce.2011.1011083.

S. Kumar, U. Batra, J. Manuf. Process. 14 (2012) 35—40. https://doi.org/10.1016/j.jmapro.2011.09.002.

S. Singh, M.F. Yeh, (2012). J. Mater. Eng. Perform. 21 (2012) 481—491. https://doi.org/10.1007/s11665-011-9861-z.

M. Kolli, A. Kumar, Eng. Sci. Technol. Int. J. 18 (2015) 524—535. https://doi.org/10.1016/j.jestch.2015.03.009.

M. Kolli, A. Kumar, Int. J. Ind. Eng. Manage. Sci. 4 (2014) 62—67. https://doi.org/10.9756/BIJIEMS.4820.

S. Tripathy, D.K. Tripathy, Eng. Sci. Technol, Int. J. 19 (2016) 62—70. https://doi.org/10.1016/j.jestch.2015.07.010.

M. Patel, G. Chandrashekarappa, S. Kumar, D.Y. Jagadish, Pimenov, K. Giasin, Metals 11 (2021) 419. https://doi.org/10.3390/met11030419.

S. Thamos, S. Ramesh, J. Jeykrishnan, Int. J. of Latest Trends in Eng. Technol. 7 (2016) 61—66. http://dx.doi.org/10.21172/1.73.009.

N. Sivashankar, R. Viswanathan, K. Periasamy, R. Venkatesh, S. Chandrakumar, Mater. Today: Proc. 37 (2021) 214—219. https://doi.org/10.1016/j.matpr.2020.05.033.

A. Kannan, R. Mohan, R. Viswanathan, N. Sivashankar, J. Mat. Res. Technol. 9 (2020) 16529—16540. https://doi.org/10.1016/j.jmrt.2020.11.074.

R. Viswanathan, S. Ramesh, S. Maniraj, V. Subburam, Measurement 159 (2020) 107800. https://doi.org/10.1016/j.measurement.2020.107800.

R. Karthik, R. Viswanathan, J. Balaji, N. Sivashankar, R. Arivazhagan, IOP Conf. Ser.: Mater. Sci. Eng. 1013 (2021) 012005. https://doi.org/10.1088/1757-899X/1013/1/012005.

C. Wang, Z. Qiang, Adv. Mat. Sci. Eng. (2019) 5625360. https://doi.org/10.1155/2019/5625360.

P. Sadagopan, B. Mouliprasanth, Int. J. Adv. Manuf. Technol. 92 (2017) 277—291. https://doi.org/10.1007/s00170-017-0039-1.

P. Suresh, R. Venkatesan, T. Sekar, N. Elango, V. Sathiyamoorthy, J. Mech. Eng. 60 (2014), 656—664. https://doi.org/10.5545/sv-jme.2014.1665.

R. Shinde, N. Patil, D. Raut, R. Pawade, P. Brahmankar, Proc. Int. Conf. Commun. Signal Process. (ICCASP 2016), Atlantis Press (2016), India. https://doi.org/10.2991/iccasp-16.2017.47.

L. Praveen, P. Geeta Krishna, L. Venugopal, N.E.C. Prasad, IOP Conf. Series: Mat. Sci. Eng. 330 (2018) 012083. https://doi.org/10.1088/1757-899X/330/1/012083.

F. Klocke, S. Schneider, L. Ehle, H. Meyer, L. Hensgen, A. Klink, Procedia CIRP, 42 (2016) 580—585. https://doi.org/10.1016/j.procir.2016.02.263.

S. Kang, D. Kim, J. Mech. Sci. Technol. 17 (2003) 1475—1484. https://doi.org/10.1007/BF02982327.

S.H. Aghdeab, A.I. Ahmed, Eng. Technol. J. 34 (2016) 2940—2949. http://dx.doi.org/10.30684/etj.34.15A.14.

N. Pragadish, E. Natarajan, M. Selvam, A. Singh, N. Saravanakumar, Lecture Notes in Mechanical Engineering. Springer, Singapore (2023) 535—546. https://doi.org/10.1007/978-981-19-3053-9_40.

V. Manoharan, S. Tamilperuvalathan, E. Natarajan, P. Ponnusamy, Lecture Notes in Mechanical Engineering, Springer, Singapore (2022) 27—34. https://doi.org/10.1007/978-981-16-4222-7_4.

P. Nagarajan, P.K. Murugesan, E. Natarajan, Medziagotyra 25 (2019) 270—275. https://doi.org/10.5755/j01.ms.25.4.20899.

R. Viswanathan, K.G. Saravanan, J. Balaji, R. Prabu, K. Balasubramani, Mater. Today: Proc. 47 (2021) 4449—4453. https://doi.org/10.1016/j.matpr.2021.05.308.

A. Kanakaraj, R. Mohan, R. Viswanathan, J. Ceram. Process. Res. 23 (2022) 268—277. https://doi.org/10.36410/jcpr.2022.23.3.268.

M. Srinivasan, S. Ramesh, S. Sundaram, R. Viswanathan, J. Ceram. Process. Res. 22 (2021) 345—355. https://doi.org/10.36410/jcpr.2021.22.3.345.

K. Periasamy, N. Sivashankar, R. Viswanathan, J. Balaji, J. Ceram. Process. Res. 23 (2022) 335—343. https://doi.org/10.36410/jcpr.2022.23.3.335.

S. Ramesh, N. Vijayakumar, R. Viswanathan, S. Saravanan, Lecture Notes in Mechanical Engineering, Springer, Singapore (2021) 167—185. https://doi.org/10.1007/978-981-16-2086-7_14.

V. N. Sulakhe, R. Dalu, N. Seth, P. Sharma, N. Sanghai, AIP Conf. Proc. 020021 (2018) 1—9. https://doi.org/10.1063/1.5058258.

E. Natarajan , V. Kaviarasan , W. H. Lim, S. Ramesh, K. Palanikumar , T. Sekar, V. H. Mok, Adv. Mat. Sci. Eng. 3072663 (2022), 1—14. https://doi.org/10.1155/2022/3072663.

P. Nagarajan, P. K. Murugesan, E. Natarajan, Mat. Sci. 25 (2019) 270—275. http://dx.doi.org/10.5755/j01.ms.25.3.20899.