Potential application as a bio-coagulant for Moringa oleifera seeds

Original scientific paper

Authors

  • Amanda Zviuya Department of Chemical and Process Systems Engineering Department, Harare Institute of Technology, P. O. Box BE 277, Belvedere, Harare, Zimbabwe
  • Joseph Govha Department of Chemical and Process Systems Engineering Department, Harare Institute of Technology, P. O. Box BE 277, Belvedere, Harare, Zimbabwe
  • Placxedes Sigauke Department of Chemical, Materials and Metallurgical Engineering, Faculty of Engineering and Technology, Botswana International University of Science and Technology, Plot 10071, Boseja Ward, Private Bag 16 Palapye, Botswana
  • amvurat@biust.ac.bw Mamvura Department of Chemical, Materials and Metallurgical Engineering, Faculty of Engineering and Technology, Botswana International University of Science and Technology, Plot 10071, Boseja Ward, Private Bag 16 Palapye, Botswana
  • Gwiranai Danha Department of Chemical, Materials and Metallurgical Engineering, Faculty of Engineering and Technology, Botswana International University of Science and Technology, Plot 10071, Boseja Ward, Private Bag 16 Palapye, Botswana https://orcid.org/0000-0001-6853-8112

DOI:

https://doi.org/10.2298/CICEQ240313008Z

Keywords:

Moringa oleifera seeds, n-hexane, bio-coagulant, water treatment

Abstract

This study focused on producing a natural bio-coagulant from moringa seeds. Moringa seed extract is a natural coagulant for the treatment of water containing suspended solids and colloids and is obtained through grinding, oil extraction, protein extraction from the solids using 2 M NaCl solution, protein separation by centrifugation followed by filtration. This study investigated the production and use of bio-coagulants. Parameters investigated when producing the bio-coagulant include the effects of temperature on the removal of moisture content in the moringa seeds, the type of solvent on the oil yield, and varying the volume of n-hexane for oil extraction. Parameters investigated when using the bio-coagulant include the effect of dosage of bio-coagulant on pH and turbidity removal efficiency, and the performance of the bio-coagulant at low, medium, and high turbidity levels. The optimum temperature and time obtained by drying the moringa seeds was at 100 °C for 30 min and the highest oil yield obtained was 31% when using n-hexane as the solvent. Turbidity removal efficiency went up to 96.4 % when using 50 mg/L of the bio-coagulant at a pH of 6.1. High turbidity removal was achieved at low bio-coagulant dosages which was regarded as a breakthrough finding for this research.

References

[1] A. Benettayeb, M. Usman, C. C. Tinashe, T. Adam, and B. Haddou, Environ. Sci. Pollut. Res., vol. 29, no. 32, pp. 48185–48209, 2022, doi: 10.1007/s11356-022-19938-w.

[2] A. Ndabigengesere, K. S. Narasiah, and B. G. Talbot, Water Res., vol. 29, no. 2, pp. 703–710, 1995, doi: 10.1016/0043-1354(94)00161-Y.

[3] S. Nouhi, H. M. Kwaambwa, P. Gutfreund, and A. R. Rennie, Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019, doi: 10.1038/s41598-019-54069-2.

[4] C. S. T. Araújo et al., Water Sci. Technol., vol. 62, no. 9, pp. 2198–2203, 2010, doi: 10.2166/wst.2010.419.

[5] L. L. Salazar Gámez, M. Luna-del Risco, and R. E. S. Cano, Environ. Monit. Assess., vol. 187, no. 10, 2015, doi: 10.1007/s10661-015-4793-y.

[6] S. Boulaadjoul, H. Zemmouri, Z. Bendjama, and N. Drouiche, Chemosphere, vol. 206, pp. 142–149, 2018, doi: 10.1016/j.chemosphere.2018.04.123.

[7] W. L. Ang and A. W. Mohammad, J. Clean. Prod., vol. 262, p. 121267, 2020, doi: 10.1016/j.jclepro.2020.121267.

[8] N. Ueda Yamaguchi et al., Process Saf. Environ. Prot., vol. 147, no. April, pp. 405–420, 2021, doi: 10.1016/j.psep.2020.09.044.

[9] D. L. Villaseñor-Basulto, P. D. Astudillo-Sánchez, J. del Real-Olvera, and E. R. Bandala, J. Water Process Eng., vol. 23, no. February, pp. 151–164, 2018, doi:10.1016/j.jwpe.2018.03.017.

[10] L. Liang, C. Wang, S. Li, X. Chu, and K. Sun, Food Sci. Nutr., vol. 7, no. 5, pp. 1754–1760, 2019, doi: 10.1002/fsn3.1015.

[11] H. Barakat and G. A. Ghazal, Food Nutr. Sci., vol. 07, no. 06, pp. 472–484, 2016, doi: 10.4236/fns.2016.76049.

[12] M. Alain Mune Mune, E. C. Nyobe, C. Bakwo Bassogog, and S. R. Minka, Cogent Food Agric., vol. 2, no. 1, 2016, doi: 10.1080/23311932.2016.1213618.

[13] K. Bombo, T. Lekgoba, O. Azeez, and E. Muzenda, Environ. Clim. Technol., vol. 25, no. 1, pp. 151–160, 2021, doi: 10.2478/rtuect-2021-0010.

[14] T. A. Aderinola, T. N. Fagbemi, V. N. Enujiugha, A. M. Alashi, and R. E. Aluko, Heliyon, vol. 4, no. 10, p. e00877, 2018, doi: 10.1016/j.heliyon.2018.e00877.

[15] V. Javed, S. Javed, H. U. Saeed, T. Abbas, and I. Technology, DSSR, vol. 3, no. 1, pp. 77–88, 2025.

[16] M. M. Maroneze, L. Q. Zepka, J. G. Vieira, M. I. Queiroz, and E. Jacob-Lopes, A&A, vol. 9, no. 3, pp. 445–458, 2014, doi: 10.4136/1980-993X.

[17] J. R. Silva and D. S. Oliveira, Clean Technol., vol. 6, no. 2, pp. 625–645, 2024, doi: 10.3390/cleantechnol6020033.

[18] R. W. Saa, E. N. Fombang, E. B. Ndjantou, and N. Y. Njintang, Food Sci. Nutr., vol. 7, no. 6, pp. 1911–1919, 2019, doi: 10.1002/fsn3.1057.

[19] N. E. Nwaiwu and A. A. Bello, Res. J. Appl. Sci. Eng. Technol., vol. 3, no. 6, pp. 505–512, 2011.

[20] R. S. Putra, M. Ayu, and R. Y. Amri, Key Eng. Mater., vol. 840 KEM, no. May, pp. 29–34, 2020, doi: 10.4028/www.scientific.net/kem.840.29.

[21] A. B. A., IOSR J. Agric. Vet. Sci., vol. 1, no. 5, pp. 12–21, 2012, doi: 10.9790/2380-0151221.

[22] E. Ajav and O. Fakayode, Agrosearch, vol. 13, no. 1, p. 115, 2013, doi: 10.4314/agrosh.v13i1.11.

[23] D. O. Oloyede, N. A. Aviara, and S. K. Shittu, J. Biosyst. Eng., vol. 40, no. 3, pp. 201–211, 2015, doi: 10.5307/jbe.2015.40.3.201.

[24] M. M. S. Arreola, J. R. L. Canepa, and J. R. H. Barajas, Interciencia, vol. 41, no. 8, pp. 548–551, 2016.

[25] Q. Du, Y. Wu, S. Xue, and Z. Fu, LWT, vol. 155, p. 112988, 2022, doi: 10.1016/j.lwt.2021.112988.

[26] G. S. Madrona, I. G. Branco, V. J. Seolin, and B. De, no. May, 2012, Acta Sci. Technol, doi: 10.4025/actascitechnol.v34i3.9605.

[27] A. Gautier, C. M. Duarte, and I. Sousa, “Moringa oleifera Seeds Characterization and Potential Uses as Food,” Foods, vol. 11, no. 11, 2022, doi: 10.3390/foods11111629.

[28] A. Jain and R. S. B. M. C. Radha, J. Food Sci. Technol., vol. 56, no. 4, pp. 2093–2104, 2019, doi: 10.1007/s13197-019-03690-0.

[29] B. O. Mbah, P. E. Eme, and O. F. Ogbusu, Pakistan J. Nutr., vol. 11, no. 3, pp. 211–215, 2012, doi: 10.3923/pjn.2012.211.215.

[30] O. a Abiodun, J. a Adegbite, and O. Omolola, Glob. J. Sci. Front. Res., vol. 12, no. 5, pp. 13–17, 2012.

[31] P. Bridgemohan, R. Bridgemohan, and M. Mohamed, African J. Food Sci. Technol., vol. 5, no. 5, pp. 125–128, 2014.

[32] E. Kusumawati, Keryanti, E. M. Widyanti, F. Waluya, and Risnawati, vol. 198, no. Issat, pp. 365–370, 2020, doi: 10.2991/aer.k.201221.060.

[33] M. H. Ng and M. S. Elshikh, Ind. Domest. Waste Manag., vol. 1, no. 1, pp. 1–11, 2021, doi: 10.53623/idwm.v1i1.41.

Published

— Updated on 06.05.2025

Issue

Section

Articles

How to Cite

Potential application as a bio-coagulant for Moringa oleifera seeds: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240313008Z

Similar Articles

1-10 of 72

You may also start an advanced similarity search for this article.