Enhancing MRR and accuracy with magnetized graphite tool in electrochemical micromachining of copper Original scientific paper

Main Article Content

Venugopal Palaniswamy
Kaliappan Seeniappan
https://orcid.org/0000-0002-5021-8759
Thanigaivelan Rajasekaran
https://orcid.org/0000-0001-9514-9120
Natrayan Lakshmaiya
https://orcid.org/0000-0003-1001-3422

Abstract

Micro hole is the fundamental feature found in any device/components. Hence this paper aims to produces the micro holes using electrochemical micromachining (EMM). The existing machining techniques in EMM for creating micro holes are associated with more overcut (OC). Hence, it is very essential to reduce OC and enhance the machining rate (MR). This paper aspires to investigate the effect of graphite electrode with magnetic force on copper plate. Four different tools namely electromagnetic graphite tool (EMGT), permanent magnet graphite tool (PMGT), graphite tool and stainless steel (SS) tool are employed for these experiments. The major influencing factors are machining voltage in volts, duty cycle in % and electrolyte concentration in g/l was considered on MR and OC. The results exposed that EMGT, PMGT and graphite electrodes produce MR of 106.4%, 74.6 % and 44.5 % over SS tool at parameter level of 23 g/l, 15 V, and 85% respectively. Graphite and EMGT electrode resulting in 11.9% and 3.41 % reduced OC respectively than SS tool at parameter level of 8V, 95% and 28 g/l.  Additionally, scanning electron microscope (SEM) picture examination is conducted to identify the magnetic field effect on the work surface.

Article Details

How to Cite
Palaniswamy, V., Seeniappan, K. ., Rajasekaran, T. ., & Lakshmaiya, N. . (2022). Enhancing MRR and accuracy with magnetized graphite tool in electrochemical micromachining of copper: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ220731027P
Section
Articles

References

X. Wu, L. Li, N. He, M. Zhao, Z. Zhan, Int. J. Adv. Manuf. Technol. 79 (2015) 321–327.

R. Thanigaivelan, R.M. Arunachalam, P. Drukpa, Int. J. Adv. Manuf. Technol. 61 (2012) 1185–1190.

M. Soundarrajan, R. Thanigaivelan, Russ. J. Appl. Chem. 91 (2018) 1805–1813.

J.R. Vinod Kumaar, R. Thanigaivelan, M. Soundarrajan, Mater. Manuf. Process. (2022)

V. Sharma, P. Gupta, J. Ramkumar, J. Manuf. Process. 75 (2022) 110–124.

J. Bian, B. Ma, H. Ai, L. Qi, Materials 14 (2021) 2311.

S. Zhan, Y. Zhao, J. Mater. Process. Technol. 291 (2021) 117049,

E. Rajkeerthi, P. Hariharan, N. Pradeep, Mater. Manuf. Process. 36 (2021) 488–500.

S. Kunar, B. Bhattacharyya, J. Adv. Manuf. Syst. 20 (2021) 27–50.

M. Soundarrajan, R. Thanigaivelan, Russ. J. Electrochem. 57 (2021) 172–182.

B. Mouliprasanth, P. Hariharan, Russ. J. Electrochem. 57 (2021) 197–213.

R. Shanmugam, M. Ramoni, G. Thangamani, M. Thangaraj, Metals 1 (2021) 778.

G. Liu, H. Tong, Y. Li, H. Zhong, Precis. Eng. 72 (2021) 356–369.

T. Yang, X. Fang, Y. Hang, Z. Xu, Y. Zeng, Int. J. Adv. Manuf. Technol. 116 (2021) 2651–2660.

N. Pradeep, K.S. Sundaram, M. Pradeep Kumar, Mater. Manuf. Process. 35 (2020) 72–85.

T.G. Arul, V. Perumal, R. Thanigaivelan, Chem. Ind. Chem. Eng. Q. 28 (2022) 247–253.

T.P. Gopinath, J. Prasanna, C.C. Sastry, S. Patil, Mater. Sci.-Pol. 39 (2021) 124–138.

S. Palani, P. Lakshmanan, R. Kaliyamurthy, Mater. Manuf. Process. 35 (2020) 1860–1869.

B. Liu, H. Zou, H. Luo, X. Yue, Micromachines 11 (2020) 118.

D.S. Patel, V. Agrawal, J. Ramkumar, V.K. Jain, G. Singh, J. Mater. Process. Technol. 282 (2020) 116644.

M. Soundarrajan, R. Thanigaivelan, Mater. Manuf. Process. 35 (2020) 775–782.

K.G. Saravanan, R. Thanigaivelan, M. Soundarrajan, Bull. Pol. Acad. Sci.:Tech. Sci. 69 (2021) e138816.

A. Vats, A. Dvivedi, P. Kumar, P, Mater. Manuf. Process. 36 (2020) 677–692.

J.R. Vinod Kumaar, R. Thanigaivelan, Mater. Manuf. Process. 35 (2020) 969–977.

T. Geethapiriyan, A.A. Kumar, A.A. Raj, G. Kumarasamy, J.S. John, IOP Conf. Ser.: Mater. Sci. Eng. 912 (2020) p.032039.

S. Maniraj, R. Thanigaivelan, Mater. Manuf. Process. 34 (2019) 1494–1501.

G. Liu, Y. Li, Q. Kong, H. Tong, H. Zhong, Precis. Eng. 52 (2018) 425–433

C. Guo, Y. Liu, Z. Wei, J. Niu, Recent Pat. Mech. Eng. 10 (2017) 51–59.

B. Mouliprasanth, P. Hariharan, Exp. Tech. 44 (2020) 259–273.

R. Thanigaivelan, R. Senthilkumar, RM. Arunachalam, N. Natarajan, Surf. Eng. Appl. Electrochem. 53 (2017) 486–492.

Y. Wang, Y. Zeng, N. Qu, D. Zhu, Int. J. Adv. Manuf. Technol. 84 (2016) 851–859.

WA. Jorgensen, BM. Frome, C. Wallach, Eur. J. Surg. 574 (1994) 83–86.

D.Y. Wu, JF. Li, B. Ren, ZQ. Tian, Chem. Soc. Rev. 37 (2008) 1025–1041.

M. Iqbal, MM. Nauman, FU. Khan, PE. Abas, Q. Cheok, A. Iqbal, B. Aissa, Int. J. Energy Res. 45 (2020) 65–102.

Y. Lu, Z. Tu, LA. Archer, Nat. Mater. 13 (2014) 961–969.

Y. Jin, N. Yang, X. Xu, Appl. Therm. Eng. 179 (2020) 115732.

M. Wissler, J. Power Sources 156 (2006) 142–150.

RC. Cruz Gómez, L. Zavala Sansón, MA. Pinilla, Exp. Fluids 54 (2013) 1582.

O. Sambalova, E. Billeter, O. Yildirim, A. Sterzi, D. Bleiner, A. Borgschulte, Int. J. Hydrogen Energy 46 (2021) 3346–3353

F. Bellucci, A. Di Martino, C. Liberti, J. Appl. Electrochem. 16 (1986) 15–22.

Natarajan, P., Karibeeran, S.S. & Murugesan, P.K. J Braz. Soc. Mech. Sci. Eng. 43, (2021). 507.