E-waste recycling: an overview of hydrometallurgical processes used for metal recovery Review paper

Main Article Content

Nallely G. Picazo-Rodríguez
https://orcid.org/0000-0002-5780-2747
Gabriela Baltierra-Costeira
https://orcid.org/0000-0001-6269-1183
Ma de Jesús Soria-Aguilar
https://orcid.org/0000-0003-3910-7772
Zeferino Gamiño Arroyo
https://orcid.org/0000-0002-6228-8586
Norman Toro
https://orcid.org/0000-0003-4273-3563
Manuel Saldana
https://orcid.org/0000-0001-9265-1529
Jesús R. de la Garza de Luna
https://orcid.org/0000-0002-6522-9514
Francisco Raúl Carrillo-Pedroza
https://orcid.org/0000-0002-0413-0676

Abstract

Exponential population growth resulted in exponential demands for metals, especially for production of electronic devices, which are mainly sent to landfills at the end of their functional life. This practice poses a significant environmental hazard due to the presence of metals within these discarded materials, termed electronic waste or e-waste, which necessitate appropriate management strategies to avert adverse effects on both the ecosystem and human health.
E-waste contains valuable metals often in concentrations rendering their recovery econom­ically viable. Furthermore, the escalating demand for metals, driven by technological progress, has made the recycling of e-waste a crucial element of sustainable resource management. This work provides an overview of hydrometallurgical processing techniques for the recovery of valuable metals from the waste from electrical and electronic equipment, where hydrometallurgy plays a determinant role in the recovery of valuable metals such as copper, gold, and silver. These methodologies employ aqueous chemistry to facilitate the metal extraction, presenting a cost-effective and environmentally sustainable alternative when compared to production of metals by conventional mining practices. However, the economic viability of these alternative processes may fluctuate based on the specific type and concentration of metals present within the waste.

Article Details

Section

Chemical Engineering - General

How to Cite

[1]
N. G. Picazo-Rodríguez, “E-waste recycling: an overview of hydrometallurgical processes used for metal recovery: Review paper”, Hem Ind, Dec. 2025, doi: 10.2298/HEMIND241118015D.

References

[1] Pinna EG, Sebastián Drajlin D, Toro N, Rodriguez MH. Kinetic modeling of the leaching of LiCoO2 with phosphoric acid. J Mater Res Technol. 2020; 9(6): 14017-14028. https://doi.org/10.1016/J.JMRT.2020.09.109

[2] Toro Villarroel NR, Torres Albornoz DA. La fuerza del litio. Santiago de Chile: Memoria Creativa; 2023. https://doi.org/10.61303/978-956-416-471-7

[3] Chen J-J, Gamiño Arroyo Z, Recovery of copper from printed circuit and electronic waste. Jóvenes Cienc. 2017; 3(2); 2412-2416. https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/1997

[4] Cui J, Zhang L, Metallurgical recovery of metals from electronic waste. J Hazard Mater. 2008; 158(2-3): 228-256. https://doi.org/10.1016/j.jhazmat.2008.02.001

[5] Akcil A, Erust C, Sekhar C, Ozgun M, Sahin M, Tuncuk A, Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants. Waste Manag. 2015; 45: 258-271. https://doi.org/10.1016/j.wasman.2015.01.017

[6] Araiza JA, Escobar K, Nájara JA, Diagnóstico de generación y manejo de los residuos eléctricos y electrónicos en instituciones educativas: un caso de estudio. Ing Rev Acad Fac Ing UADY. 2016; 20: 115-126. https://www.revista.ingenieria.uady.mx/ojs/index.php/ingenieria/article/view/34 (in Spanish)

[7] Forti V, Balde CP, Kuehr R, Bel G, The global E-waste monitor 2020: Quantities, flows and the circular economy potential. Bonn, Geneva and Rotterdam: United Nations University/United Nations Institute for Training and Research, International Telecommunication Union, and International Solid Waste Association. https://ewastemonitor.info/wp-content/uploads/2020/11/GEM_2020_def_july1_low.pdf Accessed October 23, 2024.

[8] Dehchenari M, Hosseinpoor S, Aali R, Salighehdar N, Mehdipour M, Simple method for extracting gold from electrical and electronic wastes using hydrometallurgical process. Environ Health Eng Manag J. 2017; 4(1): 55-58. http://dx.doi.org/10.15171/EHEM.2017.08

[9] Krishnan S, Syahidah N, Kamyab H, Mat S, Fadhil M, Abd Z, Chaiprapat S, Kenzo I, Ichikawa Y, Nasrullah M, Chelliapan S, Othman N, Current technologies for recovery of metals from industrial wastes: An overview. Environ Technol Innov. 2021; 22: 101525. https://doi.org/10.1016/j.eti.2021.101525

[10] Yao Z, Xu Z, Shuai Q, Chen X, Jiang Z, Peng X, Li H, Solidification of municipal solid waste incineration fly ash through co-mechanical treatment with circulation fluidized bed combustion fly ash. Materials. 2020; 13(1): 141. https://doi.org/10.3390/ma13010141

[11] Li H, Oraby E, Eksteen J, Cyanide consumption minimisation and concomitant toxic effluent minimisation during precious metals extraction from waste printed circuit boards. Waste Manag. 2021; 125: 87-97. https://doi.org/10.1016/j.wasman.2021.02.033

[12] Hsu E, Barmak K, West A, Hyung A, Park A, Advancements in the Treatment and Processing of Electronic Waste with Sustainability: A Review of Metal Extraction and Recovery Technologies. Green Chem. 2019; 21: 919-936. https://doi.org/10.1039/C8GC03688H

[13] Pinillo GA. Lixiviación de cobre contenido en tarjetas de computador PCB para la extracción de metales preciosos. Rev Ing Investig Desarr. 2018; 18(2): 15-21. https://doi.org/10.19053/1900771X.v18.n2.2018.11873 (in Spanish)

[14] Barragan J, Alemán J, Peregrina A, Amaya M, Rivero E, Larios E. Leaching of Metals from e Waste: From Its Thermodynamic Analysis and Design to Its Implementation and Optimization. ACS. 2021; 6(18): 12063-12071. https://doi.org/10.1021/acsomega.1c00724

[15] Chatterjee S. Sustainable Electronic Waste Management and Recycling Process. Am J Environ Eng. 2012; 2(1): 23-33. http://dx.doi.org/10.5923/j.ajee.20120201.05

[16] Lee H, Molstad E, Brajendra M, Recovery of Gold and Silver from Secondary Sources of Electronic Waste Processing by Thiourea Leaching. J Miner Metals Mater Soc. 2018; 70: 1616-1621. https://doi.org/10.1007/s11837-018-2965-2

[17] Tuncuk A, Akcil A, Yazici E, Deveci H, Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Miner Eng. 2012; 25(1): 28-37. https://doi.org/10.1016/j.mineng.2011.09.019

[18] Ashiq A, Kulkarni J, Vithanage M, Hydrometallurgical recovery of metals from e-waste in: Vara M, Vithanage M, eds. Electronic Waste Management and Treatment Technology, Elsevier Inc.; 2019: 225-246. https://doi.org/10.1016/B978-0-12-816190-6.00010-8

[19] Leiva-Guajardo SI, Toro N, Fuentealba E, Morel MJ, Soliz A, Portillo C, Galleguillos Madrid, FM, Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review. Materials (Basel) 2024; 17(22): 5434. https://doi.org/10.3390/MA17225434

[20] Tamayo-Soriano DA, Soria-Aguilar M de J, Picazo-Rodríguez NG, Almaguer-Guzman I, Chaidez-Felix J, Carrillo-Pedroza FR, Acid Leaching of La and Ce from Ferrocarbonatite-Related REE Ores. Minerals 2024; 14(5): 504. https://doi.org/10.3390/MIN14050504

[21] Najera Ibarra JM, Soria-Aguilar M de J, Martínez-Luevanos A, Picazo-Rodriguez NG, Martínez-Luévanos A, Carrillo-Pedroza FR, Figueroa-López U, Valenzuela García JL, Zinc Extraction from Primary Lead Smelting Slags by Oxidant Alkaline Leaching. Processes 2024; 12(7): 1409. https://doi.org/10.3390/PR12071409

[22] González-Ibarra AA, Nava-Alonso F, Dávila-Pulido GI, Carrillo-Pedroza FR, Rodríguez-Flores AM, Dissolution behavior of elemental tellurium and tellurium dioxide in alkaline cyanide solutions. Hydrometallurgy 2021; 203: 105702. https://doi.org/10.1016/J.HYDROMET.2021.105702

[23] Garza-Román MR, Carrillo-Pedroza FR, Picazo-Rodríguez NG, Soria-Aguilar M de J, Almaguer-Guzmán I, Chaidez-Félix J. Effects of pretreatment and leaching medium on the extraction efficiency of Au and Ag from a chalcopyrite leaching by-product. DYNA 2021; 88(218): 119-26. https://doi.org/10.15446/dyna.v88n218.90284

[24] Ramos-Cano J, González-Zamarripa G, Carrillo-Pedroza FR, Soria-Aguilar MDJ, Hurtado-Macías A, Cano-Vielma A, Kinetics and statistical analysis of nickel leaching from spent catalyst in nitric acid solution. Int J Miner Process. 2016; 148: 41-47. https://doi.org/10.1016/J.MINPRO.2016.01.006

[25] Soria-Aguilar MDJ, Davila-Pulido GI, Carrillo-Pedroza FR, Gonzalez-Ibarra AA, Picazo-Rodriguez N, de Jesus Lopez-Saucedo F, Ramos-Cano J, Oxidative Leaching of Zinc and Alkalis from Iron Blast Furnace Sludge. Metals. 2019; 9(9): 1015. https://doi.org/10.3390/MET9091015

[26] Cháidez J, Parga J, Valenzuela J, Carrillo R, Almaguer I, Leaching Chalcopyrite Concentrate with Oxygen and Sulfuric Acid Using a Low-Pressure Reactor. Metals. 2019; 9(2): 189. https://doi.org/10.3390/MET9020189

[27] Hossain R, Sahajwalla V, Current recycling innovations to utilize e-waste in sustainable green metalmanufacturing. Phil Trans R Soc A. 2024; 382: 20230239. https://doi.org/10.1098/rsta.2023.0239

[28] Gulliani S, Volpe M, Messineo A, Volpe R. Recovery of metals and valuable chemicals from waste electric and electronic materials: a critical review of existing technologies. RSC Sustainability 2023; 1: 1085-1108. https://doi.org/10.1039/d3su00034f

[29] Magoda K, Mekuto, L. Biohydrometallurgical Recovery of Metals from Waste Electronic Equipment: Current Status and Proposed Process. Recycling. 2022; 7: 67. https://doi.org/10.3390/recycling7050067

[30] Nagarajan N, Panchatcharam P, A Comprehensive Review on Sustainable Metal Recovery from E-Waste Based on Physiochemical and Biotechnological Methods. Eng Sci. 2023; 22(844): 844. https://dx.doi.org/10.30919/es8d844

[31] Mura M, Castillo I, Torres D, Galleguillos Madrid FM, Gálvez E, Gallegos S, Castillo J, Varas M, Jamett, I, Toro N, Global Overview of the Lithium Market and Opportunities for Chile. Resources. 2025; 14(2): 33. https://doi.org/10.3390/RESOURCES14020033

[32] Rocchetti L, Vegliò F, Kopacek B, Beolchini F, Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant. Environ Sci Technol. 2013; 47(3): 1581-1588. https://doi.org/10.1021/es302192t

[33] Hossain MS, Ahmad Yahaya AN, Suhaila Yacob L, Zulkhairi Abdul Rahim M, Mohamad Yusof NN, Bachmann RT, Selective recovery of Copper from waste mobile phone printed circuit boards using Sulphuric acid leaching. Mater Today Proc. 2018; 5(10): 21698-21702. https://doi.org/10.1016/j.matpr.2018.07.021

[34] Park Y, Eom Y, Yoo K, Jha MK, Leaching of copper from waste-printed circuit boards (Pcbs) in sulfate medium using cupric ion and oxygen. Metals (Basel). 2021; 11(9): 1369. https://doi.org/10.3390/met11091369

[35] Dávila-Pulido GI, Salinas-Rodríguez A, Carrillo-Pedroza FR, González-Ibarra AA, Méndez-Nonell J, Garza-García M, Leaching kinetics of electronic waste for the recovery of copper: Rate-controlling step and rate process in a multisize particle system. Int J Chem Kinet. 2021; 53(3): 379-389. https://doi.org/10.1002/kin.21450

[36] Rajahalme J, Perämäki S, Budhathoki R, Väisänen A, Effective Recovery Process of Copper from Waste Printed Circuit Boards Utilizing Recycling of Leachate. JOM. 2021; 73: 980-987. https://doi.org/10.1007/s11837-020-04510-z

[37] Barragan JA, Ponce De León C, Alemán Castro JR, Peregrina-Lucano A, Gómez-Zamudio F, Larios-Durán ER, Copper and Antimony Recovery from Electronic Waste by Hydrometallurgical and Electrochemical Techniques. ACS Omega. 2020; 5(21): 12355-12363. https://doi.org/10.1021/acsomega.0c01100

[38] Wstawski S, Emmons-Burzyńska M, Rzelewska-Piekut M, Skrzypczak A, Regel-Rosocka M, Studies on copper(II) leaching from e-waste with hydrogen sulfate ionic liquids: Effect of hydrogen peroxide. Hydrometallurgy. 2021; 205: 105730. https://doi.org/10.1016/j.hydromet.2021.105730

[39] Huang J, Chen M, Chen H, Chen S, Sun Q, Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid. Waste Manag. 2014; 34(2): 483-488. https://doi.org/10.1016/j.wasman.2013.10.027

[40] Zhang D-J, Dong L, Li Y-T, Wu Y, Ma Y-X, Yang B, Copper leaching from waste printed circuit boards using typical acidic ionic liquids recovery of e-wastes’ surplus value. Waste Manag. 2018; 78: 191-197. https://doi.org/10.1016/j.wasman.2018.05.036

[41] Kavousi M, Sattari A, Alamdari EK, Firozi S, Selective separation of copper over solder alloy from waste printed circuit boards leach solution. Waste Manag. 2017; 60: 636-642. https://doi.org/10.1016/j.wasman.2016.07.042

[42] Segura-Bailón B, Lapidus GT, Selective recovery of copper contained in waste PCBs from cellphones with impurity inhibition in the citrate-phosphate system. Hydrometallurgy. 2021; 203: 105699. https://doi.org/10.1016/j.hydromet.2021.105699

[43] Kim EY, Kim MS, Lee JC, Jeong J, Pandey BD, Leaching kinetics of copper from waste printed circuit boards by electro-gene-rated chlorine in HCl solution. Hydrometallurgy. 2011; 107(3-4): 124-132. https://doi.org/10.1016/j.hydromet.2011.02.009

[44] Mudila R, Singh KK, Morrison C, Love J, Recycling copper and gold from e-waste by a two-stage leaching and solvent extraction process. Sep Purif Technol. 2021; 263: 118400. https://doi.org/10.1016/j.seppur.2021.118400

[45] Torres R, Lapidus G, Copper leaching from electronic waste for the improvement of gold recycling. Waste Manag. 2016; 57: 131-139. https://doi.org/10.1016/j.wasman.2016.03.010

[46] Huan L, Oraby E, Eksteen J, Extraction of copper and the co-leaching behaviour of other metals from waste printed circuit boards using alkaline glycine solutions. Resour Conserv Recycl. 2020; 154: 104624. https://doi.org/10.1016/j.resconrec.2019.104624

[47] Petter P, Veit H, Bernardes A, Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manag. 2014; 34(2): 475-482. https://doi.org/10.1016/j.wasman.2013.10.032

[48] Kasper A, Veit H, Gold recovery from printed circuit boards of mobile phones scraps using a leaching solution alternative to cyanide. Braz J Chem Eng. 2018; 35(3): 931-942. https://doi.org/10.1590/0104-6632.20180353s20170291

[49] Gámez S, Garcés K, De la Torre E, Guevara A, Precious metals recovery from waste printed circuit boards using thiosulfate leaching and ion exchange resin. Hydrometallurgy 2019; 186: 1-11. https://doi.org/10.1016/j.hydromet.2019.03.004

[50] Cerecedo-Sáenz E, Cárdenas-Reyes EA, Rojas-Calva AH, Reyes-Valderrama MI, Rodríguez-Lugo V, Toro N, Gálvez E, Acevedo-Sandoval OA, Hernández-Ávila J, Salinas-Rodríguez E, Use of the O2-Thiosemicarbazide System, for the Leaching of: Gold and Copper from WEEE & Silver Contained in Mining Wastes. Materials 2021; 14(23): 7329. https://doi.org/10.3390/MA14237329

[51] Salinas-Rodríguez E, Hernández-ávila J, Cerecedo-Sáenz E, Arenas-Flores A, Veloz-Rodríguez MA, Toro N, del P. Gutiérrez-Amador M, Acevedo-Sandoval OA, Leaching of Copper Contained in Waste Printed Circuit Boards, Using the Thiosulfate-Oxygen System: A Kinetic Approach. Materials 2022; 15(7): 2354. https://doi.org/10.3390/MA15072354

[52] Halmenshlager P, Veit H, Bernardes A, Leaching of gold and silver from printed circuit board of mobile phones. Rev Esc Minas. 2015; 68(1): 61-68. https://doi.org/10.1590/0370-44672015680152

[53] Batnasan A, Haga K, Shibayama A, Recovery of Precious and Base Metals from Waste Printed Circuit Boards Using a Sequential Leaching Procedure. JOM. 2018; 70: 124-128. https://doi.org/10.1007/s11837-017-2694-y

[54] Jing L, Xiu X, Wen, L, Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manag. 2012; 32(6): 1209-1212. https://doi.org/10.1016/j.wasman.2012.01.026

[55] Batnasan A, Haga K, Shibayama A, Recovery of Valuable Metals from Waste Printed Circuit Boards by Using Iodine-Iodide Leaching and Precipitation in: Kim H, Wesstrom B, Alam S, Ouchi T, Azimi G, Neelameggham NR, Wang S, GuanedsX. Rare Metal Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. 2018; 131-142. https://doi.org/10.1007/978-3-319-72350-1_12

[56] Birich A, Gao Z, Vrucak D, Friedrich B, Sensitivity of Gold Lixiviants for Metal Impurities in Leaching of RAM Printed Circuit Boards. Metals (Basel). 2023; 13(5): 969. https://doi.org/10.3390/met13050969

[57] Murali A, Zhang Z, Shine A, Free M, Sarswat P, E-wastes derived sustainable Cu recovery using solvent extraction and electrowinning followed by thiosulfate-based gold and silver extraction. J Hazard Mater Adv. 2022; 8: 100196. https://doi.org/10.1016/j.hazadv.2022.100196

[58] Rao M, Singh K, Morrison C, Love J, Recycling copper and gold from e-waste by a two-stage leaching and solvent extraction process. Sep Purif Technol. 2021; 263: 118400. https://doi.org/10.1016/j.seppur.2021.118400

[59] Nekouei R, Pahlevani F, Assefi M, Maroufi S, Sahajwalla V. Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. J Hazard Mater. 2019; 371: 389-396. https://doi.org/10.1016/j.jhazmat.2019.03.013

[60] Bui T, Jeon S, Lee Y, Facile recovery of gold from e-waste by integrating chlorate leaching and selective adsorption using chitosan-based bioadsorbent. J Environ Chem Eng. 2021; 9(1): 104661. https://doi.org/10.1016/j.jece.2020.104661

[61] Nogueira A, Carreira A, Vargas S, Passos H, Schaffer N, Simple gold recovery from e-waste leachate by selective precipitation using a quaternary ammonium salt. Sep Purif Technol. 2023; 316: 123797. https://doi.org/10.1016/j.seppur.2023.123797

[62] Mahapatra RP, Srikant SS, Rao RB, Recovery of basic valuable metals and alloys from E-waste using microwave heating followed by leaching and cementation process. Sādhanā. 2019; 44: 209. https://doi.org/10.1007/s12046-019-1193-y

[63] Arya S, Kumar S, E-waste in India at a glance: Current trends, regulations, challenges and management strategies. J Clean Prod. 2020; 271(): 122707. https://doi.org/10.1016/j.jclepro.2020.122707

[64] Ramesh M, Paramasivan M, Akshay P, Jarin T, A review on electric and electronic waste material management in 21st century. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.01.057

[65] Islam A, Ahmed T, Rabiul M, Rahman A, Sultana M, Abd A, Uddin M, Hwa S, Hasan M, Advances in sustainable approaches to recover metals from e-waste-A review. J Clean Prod. 2019; 244: 118815. https://doi.org/10.1016/j.jclepro.2019.118815

[66] Ueberschaar M, Dariusch Jalalpoor D, Korf N, Rotter VS, Potentials and Barriers for Tantalum Recovery from Waste Electric and Electronic Equipment. J Ind Ecol. 2017; 21(3): 700-714. https://doi.org/10.1111/JIEC.12577

[67] Blais C, Le Dinh AQ, Loranger É, Abdul-Nour G, Precious Metals Recovery Process from Electronic Boards: Case Study of a Non-Profit Organization (QC, Canada). Sustainability. 2024; 16(6): 2509. https://doi.org/10.3390/SU16062509

[68] Dias J, Pereira Silva AG, França de Holanda JN, Martins Delatorre F, Oliveira da Conceição A, Mendonça de Miranda G, Futuro A, Cardinal Pinho S. Environmental and Technological Assessment of Operations for Extraction and Concentration of Metals in Electronic Waste. Sustainability. 2023; 15(17): 13175. https://doi.org/10.3390/SU151713175

[69] Giese EC, E-waste mining and the transition toward a bio-based economy: The case of lamp phosphor powder. MRS Energy Sustain. 2022; 9(2): 494-500. https://doi.org/10.1557/s43581-022-00026-y

[70] Jin G, Li W, Wang S, Gao S. A systematic selective disassembly approach for Waste Electrical and Electronic Equipment with case study on liquid crystal display televisions. Proc Inst Mech Eng B. 2017; 231(13): 2261-2278. https://doi.org/10.1177/0954405415575476

[71] Fenwick C, Mayers K, Lee J, Murphy R, Recycling plastics from e-waste: Implications for effective eco-design. J Ind Ecol. 2023; 27(5): 1370-1388. https://doi.org/10.1111/JIEC.13409

[72] Chancerel P, Meskers CEM, Hagelüken C, Rotter VS, Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment. J Ind Ecol. 2009; 13(5): 791-810. https://doi.org/10.1111/J.1530-9290.2009.00171.X

[73] Alkouh A, Keddar KA, Alatefi S, Remanufacturing of Industrial Electronics: A Case Study from the GCC Region. Electronics. 2023; 12(9): 1960. https://doi.org/10.3390/ELECTRONICS12091960

[74] Cozza G, D’Adamo I, Rosa P, Circular manufacturing ecosystems: Automotive printed circuit boards recycling as an enabler of the economic development. Prod. Manuf. Res. 2023; 11(1): 2182837. https://doi.org/10.1080/21693277.2023.2182837

[75] Wu C, Awasthi AK, Qin W, Liu W, Yang C, Recycling value materials from waste PCBs focus on electronic components: Technologies, obstruction and prospects. J Environ Chem Eng. 2022; 10(5): 108516. https://doi.org/10.1016/j.jece.2022.108516

[76] Brindhadevi K, Barceló D, Lan C, Rene E, E-waste management, treatment options and the impact of heavy metal extraction from e-waste on human health: Scenario in Vietnam and other countries. Environ Res. 2023; 217: 114926. https://doi.org/10.1016/j.envres.2022.114926

[77] Gravel S, Roberge B, Calosso M, Gagné S, Lavoie J, Labrèche F, Occupational health and safety, metal exposures and multi-exposures health risk in Canadian electronic waste recycling facilities. Waste Manag. 2023; 165: 140-149. https://doi.org/10.1016/j.wasman.2023.04.026

[78] Marconi M, Gregori F, Germani M, Papetti A, Favi C, An approach to favor industrial symbiosis: The case of waste electrical and electronic equipment. Procedia Manuf. 2018; 21: 502-509. https://doi.org/10.1016/j.promfg.2018.02.150

[79] Zeng H, Chen X, Xiao X, Zhou Z, Institutional pressures, sustainable supply chain management, and circular economy capability: Empirical evidence from Chinese eco-industrial park firms. J Clean Prod. 2017; 155: 54-65. https://doi.org/10.1016/j.jclepro.2016.10.093

[80] Park JM, Park JY, Park HS, A review of the National Eco-Industrial Park Development Program in Korea: Progress and achievements in the first phase, 2005-2010. J Clean Prod. 2016; 114: 33-44. https://doi.org/10.1016/j.jclepro.2015.08.115

[81] Ye Q, Umer Q, Zhou R, Asmi A, Asmi F, How publications and patents are contributing to the development of municipal solid waste management: Viewing the UN Sustainable Development Goals as ground zero. J Environ Manag. 2023; 325: 116496. https://doi.org/10.1016/j.jenvman.2022.116496

[82] Alarcón A. Method for recovering gold and silver from printed circuit boards using an ionic solution. MX 391678 B, 2022. https://patents.google.com/patent/MX391678B/en

[83] Berrueta F. Non-ferrous metals obtained from electronic scrap through physical-mechanical refining. MX/a/2018/006178, 2019. https://patents.google.com/patent/MX2018006178A/en

[84] Zhang Y. Cleaning treatment method to efficiently recycle useful substances of electronic garbage. CN113732005A, 2021. https://patents.google.com/patent/CN113732005A/en

[85] Minjie S. System and method for electronic waste pyrolysis recovery processing. CN106520152A, 2017. https://patents.google.com/patent/CN106520152A/en

[86] Lynn W. Simplified method of gold recovery from electronic waste. US20220235433A1, 2022. https://patents.google.com/patent/US20220235433A1/en

[87] Bin Z. Preparation for hollow polyaniline microspheres, method for recovering precious metals in electronic waste and method of recycling the recovery product. CN110639438A, 2022. https://patents.google.com/patent/CN110639438A/en

[88] Reece W. Process for recovering metal from electronic waste. US11608544B2, 2023. https://patents.google.com/patent/US11608544B2/en

[89] Marlin F. Method for the recovery of metals from electronic waste. CA3189365A1, 2022. https://patents.google.com/patent/CA3189365A1/en

[90] Mohamed K. A process to recover a metallic fraction of electronic waste and produce value-added products. WO2023087114A1, 2023. https://patents.google.com/patent/WO2023087114A1/en

[91] Xiaohui L. Comprehensive method of separation and recovery of electronic waste. CN110983031A, 2020. https://patents.google.com/patent/CN110983031A/en

[92] Kumar Sahoo P, Environmental Aspects of E-waste Management. In Futuristic Trends in Chemical Material Sciences & Nano Technology. 2024; 3: 306-318. https://doi.org/10.58532/V3BDCS1CH21

[93] Mishra K, Siwal SS, Thakur VK, E-waste recycling and utilization: A review of current technologies and future perspectives. Curr. Opin. Green Sustain Chem. 2024; 47: 100900. https://doi.org/10.1016/J.COGSC.2024.100900

[94] Alam T, Golmohammadzadeh R, Faraji F, Shahabuddin M. E-Waste Recycling Technologies: An Overview, Challenges and Future Perspectives. In: Paradigm Shift in E-waste Management, Editor1 A.; Editor2 B., Eds.; CRC Press: Boca Raton, FL, USA; 2022: 143-176. https://doi.org/10.1201/9781003095972-10

[95] He Y, Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Kumar Gupta V, Peng W, Lam SS, Tabatabaei M, Aghbashlo M, Driving sustainable circular economy in electronics: A comprehensive review on environmental life cycle assessment of e-waste recycling. Environ Pollut. 2024; 342: 123081. https://doi.org/10.1016/J.ENVPOL.2023.123081

[96] Seif R, Salem FZ, Allam NK. E-waste recycled materials as efficient catalysts for renewable energy technologies and better environmental sustainability. Environ Dev Sustain. 2023; 26: 5473-5508. https://doi.org/10.1007/S10668-023-02925-7

[97] Senthilnathan J, Philip L. Persistent Toxic Substances Released from Uncontrolled E-waste Recycling and Action for the Future. In: Jawaid, M, Khan, A, eds. Conversion of Electronic Waste in to Sustainable Products. Sustainable Materials and Technology. Singapore: Springer; 2023: 103-126. https://doi.org/10.1007/978-981-19-6541-8_4

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)