Investigation of hazardous waste - A case study of electric arc furnace dust characterization Technical paper

Main Article Content

Vanja Trifunović
Snežana Milić
Ljiljana Avramović
Radojka Jonović
Vojka Gardić
Stefan Đorđievski
Silvana Dimitrijević


Dust from an electric arc furnace is formed as the main by-product of the steel production process from the secondary iron-based raw materials. This dust has significant contents of Zn and Fe, as well as Pb, Cd, Ca, Mg, Cr, Mn, Si, Ni, Cu, F, Cl and other elements and is considered hazardous industrial solid waste since it contains heavy metals. In order to protect the environment and public health from the negative impact of this type of hazardous waste, it is necessary, even mandatory, to carry out its treatment in accordance with the legislation of the country where it is located. Before applying any treatment of the electric arc furnace (EAF) dust, it is necessary to perform its detailed characterization. In this paper, the following charac­terization of EAF dust originating in the Republic of Serbia was performed: physical-mechanical and chemical characterization, determination of granulometric composition, and mineralogical characterization. Also, the EAF dust impact on the environment and human health was assessed (Leachability and Toxicity Characteristic Leaching Procedure (TCLP) tests). The results have shown that the Zn content is in the range 32 to 35 % and that the main mineralogical phases of the dust are zincite, franklinite, magnetite, and magnesioferrite. Granulometric analysis has shown that 80 % of the sample consists of particles less than 26 µm in size. According to the leaching test results, the EAF dust is characterized as a hazardous waste due to the increased chloride content, while the TCLP test indicated dust toxicity due to the increased contents of Zn, Cd, and Pb.


Download data is not yet available.

Article Details

How to Cite
Trifunović, V., Milić, S., Avramović, L., Jonović, R., Gardić, V., Đorđievski, S., & Dimitrijević, S. (2022). Investigation of hazardous waste - A case study of electric arc furnace dust characterization: Technical paper. HEMIJSKA INDUSTRIJA (Chemical Industry), 76(4), 237–249.
Environmental Engineering - Solid Waste Treatment

Funding data


Siame MC, Kaoma J, Hlabangana N, Danha G. An Attainable Region Approach for the Recovery of Iron and Zinc from Electric Arc Furnace Dust. S. Afr. J. Chem. Eng. 2019; 27: 35–42

Wu CC, Chang FC, Chen WS, Tsai MS, Wang YN. Reduction Behavior of Zinc Ferrite in EAF-Dust Recycling with CO Gas as a Reducing Agent. J. Environ. Manage. 2014; 143: 208-213

Wang J, Zhang Y, Cui K, Fu T, Gao J, Hussain S, AlGarni TS. Pyrometallurgical Recovery of Zinc and Valuable Metals from Electric Arc Furnace Dust - A Review. J. Cleaner Prod. 2021; 298: 126788

Kukurugya F, Vindt T, Havlík T. Behavior of Zinc, Iron and Calcium from Electric Arc Furnace (EAF) Dust in Hydrometallurgical Processing in Sulfuric Acid Solutions: Thermodynamic and Kinetic Aspects. Hydrometall. 2015; 154: 20–32

Silvaa VS, Silvaa JS, Costaa BdS, Labesb C, Oliveira RMPB. Preparation of Glaze Using Electric-Arc Furnace Dust as Raw Material. J. Mater. Res. Technol. 2019; 8(6): 5504–5514

Hazaveh PK, Karimia S, Rashchia F, Sheibania S. Purification of the Leaching Solution of Recycling Zinc from the Hazardous Electric Arc Furnace Dust Through an As-Bearing Jarosite. Ecotoxicol. Environ. Saf. 2020; 202: 110893

Čerňan M, Müller Z, Tlustý J, Valouch V. An Improved SVC Control for Electric Arc Furnace Voltage Flicker Mitigation. Int. J. Electr. Power Energy Syst. 2021; 129: 106831

Bruckard WJ, Davey KJ, Rodopoulos T, Woodcock JT, Italiano J. Water Leaching and Magnetic Separation for Decreasing the Chloride Level and Upgrading the Zinc Content of EAF Steelmaking Baghouse Dusts. Int. J. Miner. Process. 2005; 75: 1 – 20

Trifunović V, Avramović Lj, Jonović R, Milić S, Đorđievski S, Jonović M. Hydrometallurgical Treatment of EAF Dust in aim of Zinc Separation, Proceedings/52nd International October Conference on Mining and Metallurgy ‐ IOC 2021. In: Proceedings of The 52nd International October Conference on Mining and Metallurgy, Bor, Serbia, 2021, pp. 209-212 ISBN:978-86-6305-119-5.

Halli P, Hamuyuni J, Revitzer H, Lundström M. Selection of Leaching Media for Metal Dissolution from Electric Arc Furnace Dust. J. Cleaner Prod. 2017; 164: 265-276

Havlik T, Turzakova M, Stopic S, Friedrich B, Atmospheric Leaching of EAF Dust With Diluted Sulphuric Acid, Hydrometall. 2005; 77: 41–50

Keglevich de Buzin PJW, Heck NC, Vilela ACF. EAF dust: An Overview on the Influences of Physical, Chemical and Mineral Features in its Recycling and Waste Incorporation Routes. J. Mater. Res. Technol. 2017; 6(2): 194–202

Halli P, Hamuyuni J, Leikola M, Lundström M. Developing a Sustainable Solution for Recycling Electric Arc Furnace Dust via Organic Acid Leaching. Miner. Eng. 2018; 124: 1–9

Omran M, Fabritius T. Effect of Steelmaking Dust Characteristics on Suitable Recycling Process Determining: Ferrochrome Converter (CRC) and Electric Arc Furnace (EAF) Dusts, Powder Technol. 2017; 308: 47–60

Al-harahsheh M, Al-Nu’airat J, Al-Otoom A, Al-hammouri I, Al-jabali H, Al-zoubi M, Abu Al’asal S. Treatments of Electric Arc Furnace Dust and Halogenated Plastic Wastes: A Review. J. Environ. Chem. Eng. 2019; 7: 102856

Omran M, Fabritius T. Effect of Steelmaking Dust Characteristics on Suitable Recycling Process Determining: Ferrochrome Converter (CRC) and Electric Arc Furnace (EAF) Dusts, Powder Technol. 2017; 308: 47–60

Ruiz O, Clemente C, Alonso M. Alguacil FJ. Recycling of an Electric Arc Furnace Flue Dust to Obtain High Grade Zno. J. Hazard. Mater. 2007; 141: 33–36

Pickles CA, Marzoughi O. Thermodynamic Analysis of Metal Speciation During the Chlorosulphation of Electric Arc Furnace Dust. Miner. Eng. 2019; 140: 105874

Khattab RM, El-Sayed Seleman MM, Zawrah MF. Assessment of Electric Arc Furnace Dust: Powder Characterization and its Sinterability as Ceramic Product. Ceram. Int. 2017; 43: 12939–12947

Alencastro de Araújo J, Schalch V, Recycling of Electric Arc Furnace (EAF) Dust for Use in Steel Making Process, J. Mater. Res. Technol. 2014; 3(3): 274–279

Li YC, Zhuo SN, Peng B, Min XB, Liu H, Ke Y. Comprehensive Recycling of Zinc and Iron From Smelting Waste Containing Zinc Ferrite by Oriented Transformation with SO2. J. Cleaner Prod. 2020; 263: 121468

Environmental Protection Agency, Land Disposal Restrictions for Electric Arc Furnace Dust (K061) - Federal Register Notice, Vol. 56 No. 160, August 19, 1991 p 41164.

Norma Brasileira, ABNT 10004:2004, Solid waste Classification, 2004.

Commission of the European Communities, Guidance on classification of waste according toEWC-Stat categories, Supplement to the Manual for the Implementation of the Regulation (EC) No 2150/2002 on Waste Statistics, version 2, December 2010.

Ledesma EF, Lozano-Lunar A, Ayuso J, Galvín AP, Fernández JM, Jiménez JR. The Role of pH on Leaching of Heavy Metals and Chlorides from Electric Arc Furnace Dust in Cement-Based Mortars. Constr. Build. Mater. 2018; 183: 365–375

Ng KS, Head I, Premier GC, Scott K, Yu E, Lloyd J, Sadhukhan J. A Multilevel Sustainability Analysis of Zinc Recovery from Wastes. Resour. Conserv. Recycl. 2016; 113: 88–105

Pickles CA. Thermodynamic Modelling of the Multiphase Pyrometallurgical Processing of Electric Arc Furnace Dust. Miner. Eng. 2009; 22: 977–985

Miki T, Chairaksa-Fujimoto R, Maruyama K, Nagasaka T. Hydrometallurgical Extraction of Zinc from CaO Treated EAF Dust in Ammonium Chloride Solution. J. Hazard. Mater. 2016; 302: 90–96

Rudnik E. Investigation of Industrial Waste Materials for Hydrometallurgical Recovery of Zinc. Miner. Eng. 2019; 139: 105871

Most read articles by the same author(s)