Use of a mixture of coal and oil as an additive for selective reduction of lateritic ore by the Caron process Technical paper

Main Article Content

Hugo Javier Angulo-Palma
Ángel Legrá Legrá
Alisa Lamorú Urgellés
Carlos Hernández Pedrera
Sandra Gallegos
Felipe M. Galleguillos Madrid
Norman Toro


Lateritic ores constitute the main source of raw material for extraction of Ni and Co by the Caron process. Consumption of oil in the reduction furnace is one of the key indicators if the metallurgical process is economical. To date it has not been possible to replace the additive fuel oil that is used at commercial scales, therefore, the aim of this study was to partially replace the oil with bituminous coal on a pilot scale by using a mixture of 2 % coal and 1.25 % oil as the reducer additive. Phases of the reduced/leached ores were analyzed by powder X-ray diffraction, while the metallic state of the ore was determined by leaching the reacted samples with a bromine-ethanol solution followed by the atomic absorption spectrometry analysis. Extractions of Ni and Co were confirmed by leaching the reduced ore with ammoniacal-ammonium carbonate solutions. It was observed that the mixture used as a reducer additive can replace the fuel oil since it allows the adequate transformation of the main mineralogical phases of the laterite ore during the reduction process and the average extraction yields of Ni and Co for ~3 and ~8 %, respectively. Although the effect of bituminous coal particle size in the process was not analyzed, the reducing mixture ensured that the Caron process was more efficient.


Download data is not yet available.

Article Details

How to Cite
Angulo-Palma, H. J. ., Legrá Legrá, Ángel ., Lamorú Urgellés, A. ., Hernández Pedrera, C. ., Gallegos, S. ., Galleguillos Madrid, F. M. ., & Toro, N. (2023). Use of a mixture of coal and oil as an additive for selective reduction of lateritic ore by the Caron process: Technical paper. HEMIJSKA INDUSTRIJA (Chemical Industry), 78(1), 17–27.
Chemical Engineering - General


Bartzas G, Tsakiridis PE, Komnitsas K. Nickel industry: Heavy metal(loid)s contamination - sources, environmental impacts and recent advances on waste valorization. Curr Opin Environ Sci Heal. 2021; 21: 100253

Mitterecker J, Košević M, Stopic S, Friedrich B, Panić V, Stevanović J, Mihailović M. Electrochemical Investigation of Lateritic Ore Leaching Solutions for Ni and Co Ions Extraction. Metals (Basel). 2022; 12(2): 325

Al-Khirbash SA. Mineralogical characterization of low-grade nickel laterites from the North Oman Mountains: Using mineral liberation analyses - scanning electron microscopy-based automated quantitative mineralogy. Ore Geol Rev. 2020; 120: 103429

Gleeson SA, Butt CRM, Elias M. Nickel Laterites. SEG Discov 2003; (54): 1-18

Domenech C, Galí S, Villanova-de-Benavent C, Soler J, J P. Reactive transport model of the formation of oxide type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba. Mineralium Deposita. 2017; 52(7): 993-1010

Aiglsperger T, Proenza JA, Lewis JF, et al. Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol Rev. 2016; 73: 127-147.

Oxley A, Barcza N. Hydro-pyro integration in the processing of nickel laterites. Miner Eng. 2013; 54: 2-13.

Caron MH. “Fundamental and practical factors in ammonia leaching of nickel and cobalt ores” JOM-Journal of the Minerals, Metals and Materials Society, 1950; 2(1): 67-90.

Caron MH. “Separation of Nickel and Cobalt” JOM-Journal of the Minerals, Metals and Materials Society, 1950; 2(1): 91-103.

Kießling F, Stopic S, Gürmen S, Friedrich B. Recovery of Diamond and Cobalt Powders from Polycrystalline Drawing Die Blanks via Ultrasound Assisted Leaching Process—Part 2: Kinetics and Mechanisms. Metals (Basel), 2020; 10(6): 741.

Palma HJA, Legrá AL, Urgellés AL, Gálvez E, Castillo J. Post-combustion Effect on Nickel and Cobalt Extractions from the Caron Process. In: Proceedings of Fourth International Conference on Inventive Material Science Applications, ICIMA 2021. Coimbatore, India, 2022, pp. 515-527.

Rodriguez R. Reduction in energy cost in Cuban Caron Process Plants. In: International Laterite Nickel Symposium 2004 (as held during the 2004 TMS Annual Meeting). The Minerals, Metals & Materials Society 2004, pp. 657-664. ISBN: 0-87339-550-6.

Canterford Jh. Oxide Ores of Nickel — The Australian Situation. Miner Process Extr Metall Rev. 1983; 1(1-2): 85-109.

Shofi A, Supriyatna YI, Prasetyo AB. Selective Reduction of Southeast Sulawesi Nickel Laterite using Palm Kernel Shell Charcoal: Kinetic Studies with Addition of Na2SO4 and NaCl as Additives. Bull Chem React Eng Catal. 2020; 15(2): 501-513.

Coello-Velázquez AL, Quijano Arteaga V, Menéndez-Aguado JM, Pole FM, Llorente L. Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit. Metals (Basel). 2019; 9(8): 882.

De Graaf JE. The treatment of lateritic nickel ores — a further study of the caron process and other possible improvements. Part I. Effect of reduction conditions. Hydrometallurgy. 1979; 5(1): 47-65.

Pickles CA, Elliott R. Thermodynamic analysis of selective reduction of nickeliferous limonitic laterite ore by carbon monoxide. Miner Process Extr Metal.l 2015; 124(4): 208-216.

Pickles CA, Anthony W. A Thermodynamic Study of the Reduction of a Limonitic Laterite Ore by Methane. High Temp Mater Process. 2018; 37(9-10): 909-19.

Pickles CA, Anthony W. Thermodynamic modelling of the reduction of a saprolitic laterite ore by methane. Miner Eng. 2018; 120: 47-59.

de Alvarenga Oliveira V, dos Santos CG, de Albuquerque Brocchi E. Assessing the Influence of NaCl on the Reduction of a Siliceous Laterite Nickel Ore Under Caron Process Conditions. Metall Mater Trans B. 2019; 50(3): 1309-1321.

Valix M, Cheung W. Effect of sulfur on the mineral phases of laterite ores at high temperature reduction. Miner Eng. 2002; 15(7): 523-530.

Ilyas S, Srivastava RR, Kim H, Ilyas N, Sattar R. Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Sep Purif Technol. 2020; 232: 115971.

Angulo-Palma HJ, Legrá-Legrá A, Hernández-Pedrera C, Lamorú-Urgellés A, Vega-Cala RJ. Efecto de la sustitución del petróleo aditivo por carbón bituminoso en el proceso de reducción de lateritas. Eff Substit Addit Oil with Bitum Coal Process Reducing Laterites. 2018; 38(3): 750-764. (Spanish)

Angulo-palma HJ, Legr A, Hern C, Lamor A, Toro-villarroel N. Reducción de menas lateríticas utilizando como aditivo mezclas de carbón bituminoso y petróleo. Tecnol Química. 2020; 40(1): 93-105. (Spanish)

Angulo-palma HJ, Terencio-guevara PL, Legrá-Legrá A, Videaux-arcia L. Análisis especiales en un horno de reducción de níquel a escala de Planta Piloto Special Analysis in a Nickel Reduction Furnace at Pilot Plant scale. Tecnol Química. 2017; 37(3): 484-499. (Spanish)

Basulto L. Evaluación de la sustitución de fuel-oil por finos de carbón antracita como aditivo en la empresa Comandante Ernesto Che Guevara 2018. (Spanish)

Ilyas S, Kim H, Srivastava RR. Carbothermic Reduction Roasting of a Low-Grade Nickel Laterite Ore in the Modified Caron Process. In: Ni-Co 2021 5th Int Symp Nickel Cobalt 2021: 317-328.

Suarez JC, Villanueva GAA, Fuxa AMDLC, González PM, Urtafe IL, Laurencio OP, Rodríguez ME. Hydrometallurgical process for the recovery of nickel and cobalt by ammoniacal leaching. US 6,524,367 B1, 2003

Angulo-Palma HJ, Legrá-Legrá A, Hernández-Pedrera C. Modelos para determinar variables importantes en el proceso Caron. Parte I: Consumo específico de energía en molienda. Opuntia Brava. 2021; 13: 149-57. (Spanish)

Sant B. Determination of metallic iron, iron(II) oxide, and iron(III) oxide in a mixture. Talanta. 1968; 15(12): 1483-1486.

Chander S, Sharma VN. Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy. 1981; 7(4): 315-327.

Valix M, Cheung WH. Study of phase transformation of laterite ores at high temperature. Miner Eng. 2002; 15(8): 607-612.

O’Connor F, Cheung WH, Valix M. Reduction roasting of limonite ores: effect of dehydroxylation. Int J Miner Process. 2006; 80(2-4): 88-99

Pintowantoro S, Widyartha AB, Setiyorini Y, Abdul F. Sodium Thiosulfate and Natural Sulfur: Novel Potential Additives for Selective Reduction of Limonitic Laterite Ore. J Sustain Metall. .2021; 7(2): 481-494.

Cabrera G, Gómez JM, Hernández I, Coto O, Cantero D. Different strategies for recovering metals from CARON process residue. J Hazard Mater. 2011; 189(3): 836-842.

Rojas-Purón AL, Turro-Breffe A. Composición mineralógica de las colas del proceso Caron en Moa, Holguín, Cuba. Minería y Geol. 2003; 19:8. (Spanish)

Miranda J, Chaviano L, Miranda J. Nuevas interpretaciones quimico-mineralogicas de las menas lateriticas y serpentinicas a traves del proceso pirometalurgico en la tecnologia carbonato-amoniacal. Rev Cuba Química. 2002; 14: 42-51. (Spanish)

Sánchez-Ramos S, Doménech-Carbó A, Gimeno-Adelantado JV, Peris-Vicente J, Valle-Algarra FM. Thermal decomposition of chromite spinel with chlorite admixture. Thermochim Acta. 2008; 476(1-2): 11-19.

Chang-Cardona AR, Rojas-Vargas A. Comportamiento electroquímico del Fe y sus iones durante la lixiviación estándar QT de minerales reducidos en el proceso “Caron” con diferentes aireaciones. Tecnol Química. 2014; 34: 117-127. (Spanish)

Rojas-Vargas A, Sánchez-Guillen C, Magaña-Haynes ME, Hernández-Pedrera C. Extracción potencial de níquel y cobalto con mineral laterítico de mina “Pinares de Mayarí” en la tecnología Caron. Parte I. Tecnol Química. 2021; 41: 519531. (Spanish)

[Rojas Vargas A, Magaña Haynes ME, Riverón AR. Lixiviación carbonato amoniacal: estimación del níquel disuelto en el efluente de destilación. Rev Metal. 2019; 55(3): 149. (Spanish)

Most read articles by the same author(s)