Energy plants as biofuel source and as accumulators of heavy metals Technical paper

Main Article Content

Magdalena Nikolić
https://orcid.org/0000-0002-2021-153X
Vladimir Tomasević
Dragan Ugrinov

Abstract

Fossil fuel depletion and soil and water pollution gave impetus to the development of a novel perspective of sustainable development. In addition to the use of plant biomass for ethanol production, plants can be used to reduce the concentration of heavy metals in soil and water. Due to tolerance to high levels of metals, many plant species, crops, non–crops, medicinal, and pharmaceutical energy plants are well-known metal hyperaccumulators. This paper focuses on studies investigating the potential of Miscanthus sp., Beta vulgaris L., Saccharum sp., Ricinus communis L. Prosopis sp. and Arundo donax L. in heavy metal removal and biofuel production. Phytoremediation employing these plants showed great potential for bioaccumulation of Co, Cr, Cu, Al, Pb, Ni, Fe, Cd, Zn, Hg, Se, etc. This review presents the potential of lignocellulose plants to remove pollutants being a valuable substrate for biofuel production. Also, pretreat­ments, dealing with toxic biomass, and biofuel production are discussed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nikolić, M., Tomasević, V. ., & Ugrinov, D. . (2022). Energy plants as biofuel source and as accumulators of heavy metals: Technical paper. HEMIJSKA INDUSTRIJA (Chemical Industry), 76(4), 209–225. https://doi.org/10.2298/HEMIND220402017N
Section
Chemical Engineering - General

Funding data

References

Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. BioEnergy Res. 2015; 8(4): 1500-1511. https://doi.org/10.1007/s12155-015-9688-9

Petrović J, Simić M, Mihajlović M, Koprivica M, Kojić M, Nuić I. Upgrading fuel potentials of waste biomass via hydrothermal carbonization: Original scientific paper. Hem Ind. 2021; 75(5): 297-305. https://doi.org/10.2298/HEMIND210507025P

Vindiš P, Muršec B, Rozman Č, Čus F. A Multi-Criteria Assessment of Energy Crops for Biogas Production. Stroj Vestn-J Mech E. 2010; 56(1): 63-70. https://www.sv-jme.eu/article/a-multi-criteria-assessment-of-energy-crops-for-biogas-production

Aziz NI, Hanafiah MM, Gheewala SH. A review on life cycle assessment of biogas production: Challenges and future perspectives in Malaysia. Biomass Bioenergy. 2019; 122: 361-74. https://doi.org/10.1016/j.biombioe.2019.01.047

Padmavathiamma P K, Li LY. Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut. 2007; 184 (1), 105-126. https://doi.org/10.1007/s11270-007-9401-5.

Vidican R, Mihăiescu T, Pleşa A, Crişan I. (2020). Opportunities for the utilization of phytoremediation biomass rich in heavy metals. ProEnvironment Promediu. 2020; 13(43): 77-81.

Chibuike GU, Obiora SC. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014; 752708. https://doi.org/10.1155/2014/752708

Pandey VC, Bajpai O, Singh N. Energy crops in sustainable phytoremediation. Renew Sust Energ Rev. 2016; 54: 58-73. http://dx.doi.org/10.1016/j.rser.2015.09.078

Sathya A, Kanaganahalli V, Rao PS, Gopalakrishnan S. Cultivation of sweet sorghum on heavy metal-contaminated soils by phytoremediation approach for production of bioethanoL. In: Prasad M N V, ed Bioremediation and Bioeconomy. Amstrdam: Elsevier; 2016: 271-292. https://doi.org/10.1016/B978-0-12-802830-8.00012-5

Nikolić M, Tomašević V. Implication of the Plant Species Belonging to the Brassicaceae Family in the Metabolization of Heavy Metal Pollutants in Urban Settings. Pol J Environ Stud. 2020; 30(1): 523-534. https://doi.org/10.15244/pjoes/122770

Pandey VC, Pandey DN, Singh N. Sustainable phytoremediation based on naturally colonizing and economically valuable plants. J Clean Prod. 2015; 86: 37–39. http://dx.doi.org/10.1016/j.jclepro.2014.08.030

Britt C, Bullard M, Hickman G, Johnson P, King J, Nicholson F, Nixon P, Smith N. Bioenergy crops and bioremediation–a review. Report by ADAS for the Department for Food, Environment and Rural Affairs. 2002: 1-34. http://randd.defra.gov.uk/Document.aspx?Document=NF0417_2072_FRP.doc

Gomes HI. Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev. 2012; 1(1): 59-66. https://doi.org/10.1080/09593330.2012.696715

Trinh TT, Werle S, Tran KQ, Magdziarz A, Sobek S, Pogrzeba M. Energy crops for sustainable phytoremediation–Thermal decomposition kinetics. Energy Procedia. 2019; 158: 873-878. http://dx.doi.org/10.1016/j.egypro.2019.01.224

Edgar VN, Fabián FL, Mario PC, Ileana VR. Coupling Plant Biomass Derived from Phytoremediation of Potential Toxic-Metal-Polluted Soils to Bioenergy Production and High-Value by-Products—A Review. Appl Sci. 2021; 11(7): 1-35. https://doi.org/10.3390/app11072982

Chintagunta AD, Zuccaro G, Kumar M, Kumar SJ, Garlapati VK, Postemsky PD, Kumar NS, Chandel AK, Simal-Gandara J. Biodiesel Production from Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Front MicrobioL. 2021; 12: 1-23. https://dx.doi.org/10.3389%2Ffmicb.2021.658284

Kumar, S. P. J., Gujjala, L. K. S., Dash, A., Talukdar, B., and Banerjee, R. “Biodiesel production from lignocellulosic biomass using oleaginous microbes,”. In: Kuila A and V. Sharma V, eds Lignocellulosic Biomass Production and Industrial Applications, Hoboken, NJ: Wiley; 2017: 65–92. https://dx.doi.org/10.3389%2Ffmicb.2021.658284

Mohapatra S, Mishra C, Behera SS, Thatoi H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass–A review. Renew Sust Energ Rev. 2017; 78 : 1007-1032. http://dx.doi.org/10.1016/j.rser.2017.05.026

Furtado A, Lupoi JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ. Modifying plants for biofuel and biomaterial production. Plant BiotechnoL. J. 2014; 12(9): 1246-1258. https://doi.org/10.1111/pbi.12300

Rayburn AL, Crawford J, Rayburn CM, Juvik JA. Genome size of three Miscanthus species. Plant Mol Biol Rep. 2009; 27(2): 184-188. https://doi.org/10.1007/s11105-008-0070-3

Wang C, Kong Y, Hu R, Zhou G. Miscanthus: A fast‐growing crop for environmental remediation and biofuel production. Glob Change Biol Bioenergy. 2021; 13(1): 58-69. https://doi.org/10.1111/gcbb.12761

Gawronski SW, Greger M, Gawronska H. Plant taxonomy and metal phytoremediation. In Sherameti I and Varma A, eds Detoxification of heavy metals. Berlin, Heidelberg: Springer; 2011: 91-109. https://doi.org/10.1007/978-3-642-21408-0_5

Arnoult S, Obeuf A, Béthencourt L, Mansard MC, Brancourt-Hulmel M. Miscanthus clones for cellulosic bioethanol production: relationships between biomass production, biomass production components, and biomass chemical composition. Ind Crops Prod. 2015; 63: 316-28. https://doi.org/10.1016/j.indcrop.2014.10.011

Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC. Miscanthus as a productive biofuel crop for phytoremediation. CRC Crit Rev Plant Sci. 2014; 33(1): 1-9. http://dx.doi.org/10.1080/07352689.2014.847616

Nurzhanova A, Pidlisnyuk V, Sailaukhanuly Y, Kenessov B, Trogl J, Aligulova R, Kalugin S, Nurmagambetova А, Abit K, Stefanovska T, Erickson L. Phytoremediation of military soil contaminated by metals and organochlorine pesticides using Miscanthus. Comm Appl Biol Sci. 2017; 82: 61-68. Corpus ID: 207991408

Zhao A, Gao L, Chen B, Feng L. Phytoremediation potential of Miscanthus sinensis for mercury-polluted sites and its impacts on soil microbial community. Environ Sci Pollut Res. 2019; 26(34): 34818-34829. https://doi.org/10.1007/s11356-019-06563-3

Zgorelec Z, Bilandzija N, Knez K, Galic M, Zuzul S. Cadmium and mercury phytostabilization from soil using Miscanthus × giganteus. Sci Rep. 2020; 10(1), 1-10. https://doi.org/10.1038/s41598-020-63488-5

Germaine KJ, McGuinness M, Dowling DN. Improving phytoremediation through plant‐associated bacteria. In Frans J. de Bruijn, ed. Molecular microbial ecology of the rhizosphere. 1st ed. New York, NY: John Wiley & Sons, Ltd. 2013; 1: 961-73. https://doi.org/10.1002/9781118297674.ch91

Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manage 2015; 151: 160-166. https://doi.org/10.1016/j.jenvman.2014.12.045

Fernando AL, Barbosa B, Boléo S, Duarte MP, Sidella S, Costa J, Cosentino SL. Phytoremediation potential of heavy metal contaminatated soils bz the perennial energy crops Miscanthus spp. And Arundo donax L. Under low irrigation. In: 26th European Biomass Conference and Exhibition. Denmark, Copenhagen, 2018, pp.136-139. http://dx.doi.org/10.5071/26thEUBCE2018-1CO.9.2

Lee W, Kuan W. Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J. 2015; 10(6): 840–854. https://doi.org/10.1002/biot.201400704

Krička T, Matin A, Bilandžija N, Jurišić V, Antonović A, Voća N, Grubor M. Biomass valorisation of Arundo donax L., Miscanthus× giganteus and Sida hermaphrodita for biofuel production. Int Agrophys. 2017; 31(4): 575-581. https://doi.org/10.1515/intag-2016-0085.

Ivanyshyn V, Nedilska U, Khomina V, Klymyshena R, Hryhoriev V, Ovcharuk O, Hutsol T, Mudryk K, Jewiarz M, Wróbel M, Dziedzic K. Prospects of growing miscanthus as alternative source of biofuel. In: Mudryk K and Sebastian Werle S, eds. Renewable Energy Sources: Engineering, Technology, Inovation. Berlin: Springer Proceedings in Energy; 2018: 801-812. https://doi.org/10.1007/978-3-319-72371-6_78C

Cai H, Markham J, Jones S, Benavides PT, Dunn JB, Biddy M, Tao L, Lamers P, Phillips S. Techno-economic analysis and life-cycle analysis of two light-duty bioblendstocks: isobutanol and aromatic-rich hydrocarbons. ACS Sustain Chem Eng. 2018; 6(7): 8790-8800. https://doi.org/10.1021/acssuschemeng.8b01152

Dantas ER, Bonhivers JC, Maciel Filho R, Mariano AP. Biochemical conversion of sugarcane bagasse into the alcohol fuel mixture of isopropanol-butanol-ethanol (IBE): Is it economically competitive with cellulosic ethanol? Bioresour. TechnoL. 2020; 314: 1-7. https://doi.org/10.1016/j.biortech.2020.123712

Raut MP, Pham TK, Gomez LD, Dimitriou I, Wright PC. Alcoholic fermentation of thermochemical and biological hydrolysates derived from Miscanthus biomass by Clostridium acetobutylicum ATCC 824. Biomass Bioenergy. 2019; 130: 1-33. https://doi.org/10.1016/j.biombioe.2019.105382

Romano A, Sorgona A, Lupini A, Araniti F, Stevanato P, Cacco G, Abenavoli MR. Morpho-physiological responses of sugar beet (Beta vulgaris L.) genotypes to drought stress. Acta Physiol Plant. 2013; 35(3): 853-865. https://doi.org/10.1007/s11738-012-1129-1.

Papazoglou EG, Fernando AL. (2017). Preliminary studies on the growth, tolerance and phytoremediation ability of sugarbeet (Beta vulgaris L.) grown on heavy metal contaminated soil. Ind Crops Prod. 2017; 107: 463-471. https://doi.org/10.1016/j.indcrop.2017.06.051

Gu P, Zhang Y, Xie H, Wei J, Zhang X, Huang X, Wang J, Lou X. Effect of cornstalk biochar on phytoremediation of Cd-contaminated soil by Beta vulgaris var. cicla L. EcotoxicoL. Environ. Saf. 2020; 205: 1-9. https://doi.org/10.1016/j.ecoenv.2020.111144

Calderón FJ, Benjamin J, Vigil MF. A comparison of corn (Zea mays L.) residue and its biochar on soil C and plant growth. PLoS One. 2015; 10(4): 1-16. https://doi.org/10.1371/journaL.pone.0121006

Sagardoy RU, Morales FE, López‐Millán AF, Abadía AN, Abadía JA. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant BioL. 2009; 11(3): 339-350. https://doi.org/10.1111/j.1438-8677.2008.00153

Harland JI, Jones CK, Hufford C. Co-products. In: Draycott P A, ed. Sugar beet, ed., Oxford, UK: Blackwell Publishing, Ltd. 2006: 443–46. http://books.google.com/books?id=S1OLrxYiFXEC

Panella L. Sugar beet as an energy crop. Sugar Tech. 2010; 12(3): 288-293. https://doi.org/10.1007/s12355-010-0041-5.

Zicari, S., Aramrueang, N., Asato, C., Chen, C., Zhang, R. Integrated processing of sugar beets at the lab and pilot scale for bioethanol and biogas production. In: 45th Symposium on Biomaterials for Fuels and Chemicals. Clearwater Beach, FL. 2014, 1-7.

Jayani RS, Saxena S, Gupta R. Microbial pectinolytic enzymes: a review. Process Biochem. 2005: 40 (9), 2931-2944. https://doi.org/10.1016/j.procbio.2005.03.026

Nielsen PH, Oxenbøll KM, Wenzel H. Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S. Int J Life Cycle Assess. 2007; 12(6): 432-438. http://dx.doi.org/10.1065/lca2006.08.265.1

Alexiades A, Kendall A, Winans KS, Kaffka SR. Sugar beet ethanol (Beta vulgaris L.): A promising low-carbon pathway for ethanol production in California. J Clean Prod. 2018; 172: 3907-3917. https://doi.org/10.1016/j.jclepro.2017.05.059

Kaffka SR, Grantz DA. Sugar crops. In: Van Alfen N, ed. Encyclopedia of Agriculture and Food Systems. San Diego, CA: Elsevier; 2014: 240-260.

Scally L, Hodkinson T, Jones MB, Origin and taxonomy of Miscanthus. In: Jones, MB, Walsh N, ed. Miscanthus for Energy and Fibre. London, UK: Earthscan Publications Ltd.; 1997: 1-45. ISBN-13: 978-1849710978, ISBN-10: 184971097X.

Xia, H., Yan, Z., Chi, X., Cheng, W. Evaluation of the phytoremediation potential of Saccharum officinarum for Cd-contaminated soil. IEEE In: 2009 International Conference on Energy and Environment Technology. Guilin, China 2009, 314-318. https://doi.org/10.1109/ICEET.2009.541

Yan Z, Xia H. Evaluation of the phytoremediation potential of sugarcane for metal-contaminated soils. IEEE. In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Guilin, China. 2010, 1-4 https://doi.org/10.1109/ICBBE.2010.5517419

Yousefi Z, Kolahi M, Majd A, Jonoubi P. Effect of cadmium on morphometric traits, antioxidant enzyme activity and phytochelatin synthase gene expression (SoPCS) of Saccharum officinarum var. cp 48-103 in vitro. EcotoxicoL. Environ. Saf. 2018; 157: 472-481. https://scite.ai/reports/10.1016/j.ecoenv.2018.03.076.

Salam J A, Hatha M A, Das N. Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manage. 2017; 193: 394-399. https://doi.org/10.1016/j.jenvman.2017.02.006

Salam JA, Das N. Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. World J MicrobioL. BiotechnoL. 2014; 30(4): 1301-1313. https://doi.org/10.1007/s11274-013-1551-6

Camarena-Rangel N, Velázquez AN, del Socorro Santos-Díaz M. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.). Chemosphere. 2015; 136: 56-62. https://doi.org/10.1016/j.chemosphere.2015.03.071

Baunthiyal M, Ranghar S. Accumulation of fluoride by plants: potential for phytoremediation. Clean - Soil Air Water. 2015; 43(1): 127-132. https://doi.org/10.1002/clen.201300353

Ubogu M, Akponah E, Vinking GE, Loho NG. Assessment of the hydrocarbon utilizing mycoflora of the root zones of saccharum officinarum. SF J Mycol. 2017; 2(1): 1-10.

Cavalcante VS, Prado RD, Vasconcelos RD, Campos CN. Iron concentrations in sugar cane (Saccharum officinarum L.) cultivated in nutrient solution. Agrociencia. 2016; 50 (7): 867-75. ISSN 2521-9766

Tamez C, Molina-Hernandez M, Medina-Velo IA, Cota-Ruiz K, Hernandez-Viezcas JA, Gardea-Torresdey J. Long-term assessment of nano and bulk copper compound exposure in sugarcane (Saccharum officinarum). Sci Total Environ. 2020; 718: 1-7. https://doi.org/10.1016/j.scitotenv.2020.137318

Xia H, Chi X, Yan, Z, Cheng W. Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin. Bioresour TechnoL. 2009; 100(20); 4649-4653. https://doi.org/10.1016/j.biortech.2009.04.069

Pandey VC, Bajpai O, Pandey DN, Singh N. Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. Genet Resour Crop Ev. 2015b; 62: 443–450. https://doi.org/10.1007/s10722-014-0208-0

Kumar A, Ahirwal J, Maiti SK, Das R. An Assessment of Metal in flyAsh and Their Translocation and Bioaccumulation in Perennial Grasses Growing at the Reclaimed Opencast Mines. Int J Environ Res.2015; 9: 1089–1096 https://dx.doi.org/10.22059/ijer.2015.996

Mukherjee P, Roychowdhury R, Roy M. Phytoremediation potential of rhizobacterial isolates from Kans grass (Saccharum spontaneum) of fly ash ponds. Clean Technol Environ Policy 2017; 19(5): 1373-1385 https://doi.org/10.1007/s10098-017-1336-y

Xia H, Chi X, Cheng W. Uptake and Growth Response of Saccharum Officinarum to Lead Pollution in SoiL. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Guilin, China, IEEE. 2009 pp.1-4. http://dx.doi.org/10.1109/ICBBE.2009.5163728

Banerjee R, Jana A, De A, Mukherjee A. Phytoextraction of heavy metals from coal fly ash for restoration of fly ash dumpsites. Bioremediat J . 2020; 24(1): 41-49. https://doi.org/10.1080/10889868.2020.1720590

Huang HY, Xu J, Bai Y, Zhang WQ, Zhu F, Li T, Wang XY, An CH. Enrichment of heavy metals in Saccharum arundinaceum (Retz.) Jeswiet in different soil habitats. Chin. J. Ecol. 2012; 31(4): 961-966. (In Chinese )

Bala A, Singh B. Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production. Renew Energy. 2019; 130: 12-24. https://doi.org/10.1016/j.renene.2018.06.033

Verardi A, Blasi A, De Bari I, Calabrò V. Steam pretreatment of Saccharum officinarum L. bagasse by adding of impregnating agents for advanced bioethanol production. Ecotoxicol Environ Saf. 2016; 134: 293-300. https://doi.org/10.1016/j.ecoenv.2015.07.034

Sutjahjo DH. The characteristics of bioethanol fuel made of vegetable raw materials. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing UK, 2018 pp. 1-7. https://doi.org/10.1088/1757-899X/296/1/012019

Scordia D, Cosentino SL, Jeffries TW. Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Bioresour TechnoL. 2010; 101(14): 5358-5365. https://doi.org/10.1016/j.biortech.2010.02.036

Kataria R, Ghosh S. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour TechnoL. 2011; 102(21): 9970-9975. https://doi.org/10.1016/j.biortech.2011.08.023

Chandel AK, Singh OV, Rao LV, Chandrasekhar G, Narasu ML. Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Bioresour TechnoL. 2011; 102(2): 1709-1714. https://doi.org/10.1016/j.biortech.2010.08.016

Sankar MK, Ravikumar R, Kumar MN, Sivakumar U. Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. Bioresour Technol. 2018; 269: 227-236. https://doi.org/10.1016/j.biortech.2018.08.091

dos Santos Vieira CF, Codogno MC, Maugeri Filho F, Maciel Filho R, Mariano AP. Sugarcane bagasse hydrolysates as feedstock to produce the isopropanol-butanol-ethanol fuel mixture: Effect of lactic acid derived from microbial contamination on Clostridium beijerinckii DSM 6423. Bioresour TechnoL. 2021; 319: 1-8. https://doi.org/10.1016/j.biortech.2020.124140

Duke JA. The quest for tolerant germplasm. In: Proceedings of ASA Special Symposium 32, Crop tolerance to suboptimal land conditions. Am Soc Agron Madison, WI; 1978: 1–61. ISBN: 0686517032

Gana AK, Yusuf AF, Apuyor B. Castor oil plant and its potential in transformation and industrialization of under developing nations in the world. Adv. J. Agric. Res. 2013; (5): 72–79. https://doi.org/10.1186/s40508-016-0055-8

Bauddh K, Singh RP. Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis. Ecol Eng. 2015; 74: 93-100. https://doi.org/10.1016/j.ecoleng.2014.10.022

Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci. 2015; 5: 757. https://doi.org/10.3389/fpls.2014.00757

Yeboah A, Lu J, Gu S, Shi Y. Amoanimaa-Dede H, Agyenim-Boateng KG, Yin X. The utilization of Ricinus communis in the phytomanagement of heavy metal contaminated soils. Environ. Rev. 2020; 28(4): 466-477. http://dx.doi.org/10.1139/er-2020-0016

Gupta R, Sharma KK, Kuhad RC. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour TechnoL.2009; 100: 1214–1220. https://doi.org/10.1016/j.biortech.2008.08.033

Ananthi TA, Meerabai RS, Krishnasamy R. Potential of Ricinus Communis L. and Brassica Juncea (L.) Czern. under natural and induced Pb Phytoextraction. Universal Journal of Environmental Research & Technology. 2012; 2(5): 429-438. http://www.environmentaljournal.org/20133273869

de Abreu CA, Coscione AR, Pires AM, Paz-Ferreiro J. Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. J Geochem Explor. 2012; 123: 3–7. https://doi.org/10.1016/j.gexplo.2012.04.013

Kiran BR, Prasad M N V. Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. Eurobiotech J. 2017; 1(2): 1-16. https://doi.org/10.24190/ISSN2564-615X/2017/02.01

Bauddh K, Singh K, Singh B, Singh RP. Ricinus communis: A robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil. Ecol Eng. 2015; 84: 640-652. https://doi.org/10.1016/j.ecoleng.2015.09.038

Palanivel TM, Pracejus B, Victor R. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Environ Sci Pollut Res. 2020; 27(14): 17359-17369. https://doi.org/10.1007/s11356-020-08319-w

Olivares AR, Carrillo-González R, González-Chávez M D C A, Hernánde RS. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manage. 2013; 114: 316-323. https://doi.org/10.1016/j.jenvman.2012.10.023

Tripathi S, Sharma P, Purchase D, Chandra R. Distillery wastewater detoxification and management through phytoremediation employing Ricinus communis L. Bioresour TechnoL. 2021; 333: 125192. https://doi.org/10.1016/j.biortech.2021.125192

González-Chávez MC, Olivares AR, Carrillo-González R, Leal ER. Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings. Int J Environ Sci TechnoL. 2015; 12(7): 2263-2272. https://doi.org/10.1007/s13762-014-0622-z

Sharma S, Madan M, Vasudevan P. Biomethane production from fermented substrates. J Ferment Bioeng. 1989; 68(4): 296-297. https://doi.org/10.1016/0922-338X(89)90034-2

Mahla SK, Dhir A. Performance and emission characteristics of CNG-fueled compression ignition engine with Ricinus communis methyl ester as pilot fueL. Environ Sci Pollut Res. 2019; 26(1): 975-985. https://doi.org/10.1007/s11356-018-3681-8

Boulal A, Khelafi M, Djaber A. Quality Study of biodiesel produced from Ricinus communis L. (Kharouaa) in southwest Algeria. Aljest. 2021. ISSN : 2437-1114

Umale NH, Ingle PB, Gore V. Experimental Investigation of Biodiesel (Caster-RICINUS COMMUNIS) using Variable Compression CI Engine. Catalyst. 2019; 6(05): 6977-6983. e-ISSN: 2395-0056 /p-ISSN: 2395-0072

Ramírez V, Baez A, López P, Bustillos R, Villalobos MÁ, Carreño R, Munive J A. Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopis laevigata). Front MicrobioL. 2019; 10: 1-12. https://doi.org/10.3389/fmicb.2019.01833

Afzal M, Shabir G, Iqbal S, Mustafa T, Khan QM, Khalid ZM. Assessment of heavy metal contamination in soil and groundwater at leather industrial area of Kasur, Pakistan. Clean (Weinh). 2014; 42(8): 1133-1139. https://doi.org/10.1002/clen.201100715

Saini P, Khan S, Baunthiyal M, Sharma V. Organ-wise accumulation of fluoride in Prosopis juliflora and its potential for phytoremediation of fluoride contaminated soil. Chemosphere. 2012; 89(5): 633-635. https://doi.org/10.1016/j.chemosphere.2012.05.034

Kumari S, Khan S. (2018). Effect of Fe3O4 NPs application on fluoride (F) accumulation efficiency of Prosopis juliflora. Ecotoxicol Environ Saf. 2018; 166: 419-426. https://doi.org/10.1016/j.ecoenv.2018.09.103

da Silva CG, Stamford TL, de Andrade SA, de Souza EL, de Araújo JM. Production of ethanol from mesquite (Prosopis juliflora (SW) DC) pods mash by Zymomonas mobilis and Saccharomyces cerevisiae. Electron J BiotechnoL. 2010; 13(5): 12-23. http://doi.org/ 10.2225/vol 13-issue 5-fulltext-21

Amdebrhan BT, Asfaw S, Assefa G. Acid hydrolysis optimization of Prosopis Juliflora stem for bioethanol production. Science. 2016; 4: 1–11 http://dx.doi.org/10.11648/j.sjee.20160401.11

Sivarathnakumar S, Jayamuthunagai J, Baskar G, Praveenkumar R, Selvakumari IAE, Bharathiraja B. Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. Bioresour TechnoL. 2019; 293: 1-7. https://doi.org/10.1016/j.biortech.2019.122060

Pasha C, Thabit HM, Kuhad RC, Linga VR. Bioethanol production from Prosopis juliflora using thermotolerant Saccharomyces cereviseae VS3 strain. J Biobased Mater Bioenergy 2008; 2(3): 204-209. https://doi.org/10.1166/jbmb.2008.406

Hou XD, Feng GJ, Ye M, Huang CM, Zhang Y. Significantly enhanced enzymatic hydrolysis of rice straw via a highperformance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Techno. 2017; 238: 139–146. https://doi.org/10.1016/j.biortech.2017.04.027

Vaid S, Mishra T, Bajaj BK. (2018). Ionic-liquid-mediated pretreatment and enzymatic saccharification of Prosopis sp. biomass in a consolidated bioprocess for potential bioethanol fuel production. Energy Ecol Environ. 2018; 3(4): 216-228. https://doi.org/10.1007/s40974-018-0095-x

Chang KL, Chen XM, Wang XQ, Han YJ, Potprommanee L, Liu JY, Liao YL, Ning XA, Sun SY, Huang Q. Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw. Bioresour Technol. 2017; 227: 388–392. https://doi.org/10.1016/j.biortech.2016.11.085

Kapoor M, Nair L M, Kuhad RC. Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem Eng J. 2008; 38(1): 88-97. https://doi.org/10.1016/j.bej.2007.06.009

Purohit R, Patel B, Harsh L N. Potential of Prosopis pallida and Prosopis juliflora for Bioethanol production. Curr Bot. 2013; 4(2): 18-20.

Mirza N, Mahmood Q, Pervez A, Ahmad R, Farooq R, Shah MM, Azim MR. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour TechnoL. 2010; 101(15): 5815-5819. https://doi.org/10.1016/j.biortech.2010.03.012

Atma W, Larouci M, Meddah B, Benabdeli K, Sonnet P. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Int J Phytoremediation. 2017; 19(4): 377-386. https://doi.org/10.1080/15226514.2016.1225291

Cristaldi A, Conti GO, Cosentino SL, Mauromicale G, Copat C, Grasso A, Zuccarello P, Fiore M, Restuccia C, Ferrante M. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Environ Res. 2020; 185: 1-16. https://doi.org/10.1016/j.envres.2020.109427

Sabeen M, Mahmood Q, Irshad M, Fareed I, Khan A, Ullah F, Hussain J, Hayat Y, Tabassum S. Cadmium phytoremediation by Arundo donax L. from contaminated soil and water. Biomed Res Int. 2013; 1: 1-10. https://doi.org/10.1155/2013/324830

Liu Y.N, Xiao XY, Guo ZH. Identification of indicators of giant reed (Arundo donax L.) ecotypes for phytoremediation of metal-contaminated soil in a non-ferrous mining and smelting area in southern China. Ecol Indic. 2019; 101: 249-260. https://doi.org/10.1016/j.ecolind.2019.01.029

Cano-Ruiz J, Galea MR, Amorós MC, Alonso J, Mauri PV, Lobo MC. Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes. Chemosphere. 2020; 252: 1-7. https://doi.org/10.1016/j.chemosphere.2020.126576

Azizi A, Krika A, Krika F. Heavy metal bioaccumulation and distribution in Typha latifolia and Arundo donax: implication for phytoremediation. Casp J Environ Sci. 2020; 18(1): 21-29. https://dx.doi.org/10.22124/cjes.2020.3975

Alshaal T, Domokos-Szabolcsy É, Márton L, Czakó M, Kátai J, Balogh P, Elhawat N, El-Ramady H, Fári M. Phytoremediation of bauxite-derived red mud by giant reed. Environ Chem Lett. 2013; 11(3): 295-302. http://dx.doi.org/10.1007/s10311-013-0406-6

Mahmood NMQ. Phytoremediation of arsenic (As) and mercury (Hg) contaminated soil. World Appl. Sci. J. 2010; 8(1); 113-118.

Domokos-Szabolcsy É, Fári M, Márton L, Czakó M, Veres S, Elhawat N, Antal G, El-Ramady H, Zsíros O, Garab G, Alshaal T. Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential. Environ Sci Pollut Res. 2018; 25(31): 31368-31380. https://doi.org/10.1007/s11356-018-3127-3

Xing X, Baoyu G, Yaqing Z, Suhong C, Xin T, Qinyan Y, Jianya L, YanW. Nitrate removal from aqueous solution by Arundo donax L. reed based anion exchange resin. J Hazard Mater. 2012; 203– 204: 86–92. https://doi.org/10.1016/j.jhazmat.2011.11.094

Elhawat N, Alshaal T, Domokos-Szabolcsy É, Márton L, Czakó M, KátaiJ, Balogh P, Sztrik A, El-Ramady H, Molnár M, Fári M. Phytoaccumulation potentials of two biotechnologically propagatedecotypes of Arundo donax in copper-contaminated synthetic waste-water. Environ Sci Pollut Res. 2014; 21(12): 7773–7780. https://doi.org/10.1007/s11356-014-2736-8

Elhawat N, Alshaal T, Domokos-Szabolcsy É, El-Ramady H, Antal G, Márton L, Czakó M, Balogh P, Fari M. Copper uptake effi-ciency and its distribution within bioenergy grass giant reed. Bull Environ Contam ToxicoL. 2015; 95(4): 452–458 https://doi.org/10.1007/s00128-015-1622-5

De Bari I, Liuzzi F, Ambrico A, Trupo M. Arundo donax Refining to Second Generation Bioethanol and FurfuraL. Processes. 2020; 8(12): 1-15. https://doi.org/10.3390/pr8121591

Brusca S, Cosentino SL, Famoso F, Lanzafame R, Mauro S, Messina M, Scandura PF. Second generation bioethanol production from Arundo donax biomass: an optimization method. Energy Procedia. 2018; 148: 728-735. http://dx.doi.org/10.1016/j.egypro.2018.08.141

Zucaro A, Forte A, Basosi R, Fagnano M, Fierro A. Life Cycle Assessment of second generation bioethanol produced from low-input dedicated crops of Arundo donax L. Bioresour TechnoL.2016; 219: 589-599. https://doi.org/10.1016/j.biortech.2016.08.022

Majeed S, Hafeez FY, Li X, Salama ES, Ji J, Malik K, Umer M. Evaluation of Fungal and Sonication Pretreatments to Improve Saccharification Yield of Arundo donax. Int J Agric Biol .2020; 24(6): 1449-1456. http://dx.doi.org/10.17957/IJAB/15.1582

Jeon Y J, Xun Z, Rogers PL. Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett. Appl. Microbiol. 2010; 51(5): 518-524. https://doi.org/10.1111/j.1472-765x.2010.02923.x

Scordia D, Cosentino SL, Lee JW, Jeffries TW. Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenergy 2012; 39: 296-305. https://doi.org/10.1016/j.biombioe.2012.01.023

e Silva CFL, Schirmer MA, Maeda RN, Barcelos CA, Pereira JrN. 2015. Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron J BiotechnoL. 2015; 18(1): 10-15. http://dx.doi.org/10.1016/j.ejbt.2014.11.002

Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttilä M, Lidén G, Olsson L. Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem.2012; 47: 1452–1459 http://dx.doi.org/10.1016/j.procbio.2012.05.016

Scordia D, Cosentino SL, Lee JW, Jeffries TW. Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass Bioenergy 2011; 35: 3018–3024. https://doi.org/10.1016/j.biombioe.2011.03.046

Aliberti A, Ventorino V, Robertiello A, Galasso M, Blaiotta G, Comite E, Faraco V, Pepe O. Effect of cellulase, substrate concentrations, and configuration processes on cellulosic ethanol production from pretreated Arundo donax. Bioresources. 2017; 12(3): 5321-5342. https://doi.org/10.15376/biores.12.3.5321-5342

Loaces I, Schein S, Noya F. Ethanol production by Escherichia coli from Arundo donax biomass under SSF, SHF or CBP process configurations and in situ production of a multifunctional glucanase and xylanase. Bioresour TechnoL. 2017; 224: 307-313. https://doi.org/10.1016/j.biortech.2016.10.075

Silitonga AS, Masjuki HH, Ong HC, Yusaf T, Kusumo F, Mahlia TMI. Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study. Ind Crops Prod. 2016; 85: 274-286. https://doi.org/10.1016/j.indcrop.2016.03.017

Majeed S, Hafeez FY, Li X, Salama ES, Ji J, Malik K, Umer M. Evaluation of Fungal and Sonication Pretreatments to Improve Saccharification Yield of Arundo donax. Int J Agric Biol. 2020; 24(6): 1449-1456. https://doi.org/10.17957/IJAB/15.1582

Althuri A, Gujjala LKS, Banerjee R. Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresour TechnoL. 2017; 245: 530-539. https://doi.org/10.1016/j.biortech.2017.08.140

Nikolić M, Stevović S. Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban For Urban Green . 2015; 14(4): 782-789. https://doi.org/10.1016/j.ufug.2015.08.002