ADVANCED pH NEUTRALIZATION CONTROL USING MODEL REFERENCE ADAPTIVE CONTROL (MRAC) WITH MIT RULE
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ250618027HKeywords:
Model Reference Adaptive Control (MRAC), MIT Rule, Adaptation gain, PID control, Nonlinear Systems, pH NeutralizationAbstract
This study presents the design and implementation of a Model Reference Adaptive Controller (MRAC) using the Massachusetts Institute of Technology (MIT) rule for a pH neutralization process in a continuous reactor. The inherent nonlinearity of acid-base reactions makes conventional Proportional–Integral–Derivative (PID) control insufficient in handling rapid pH variations. To address this, an adaptive control strategy was proposed, allowing the system to dynamically adjust control parameters based on real-time deviations from the reference model. The adaptation gain (γ) played a critical role in system stability and performance, with simulations and experimental results confirming that γ = 0.025 yielded optimal response characteristics. Higher adaptation gains accelerated convergence but introduced oscillations, while lower values slowed the response. MATLAB/Simulink simulations and real-time experimental validation demonstrated that MRAC effectively stabilized the system, achieving faster settling time and improved tracking performance compared to PID control. The findings suggest that MRAC with the MIT rule is a viable alternative for complex nonlinear processes, offering improved robustness against disturbances and set-point variations. Further enhancements, including the Normalized MIT rule and polynomial modeling, could further refine the controller’s effectiveness in industrial applications.
References
[1] S.D. Kambale, S. George, R.G. Zope, Int. Res. J. Eng. Technol. 2 (2015) 354-361. https://www.irjet.net/archives/V2/i3/Irjet-v2i365.pdf.
[2] N.H.S. Abdullah, M.N. Karsiti, R. Ibrahim, A review of pH neutralization process control, Int. Conf. Intell. Adv. Syst., Kuala Lumpur, Malaysia (2012), p. 594. https://doi.org/10.1109/ICIAS.2012.6306084.
[3] L. Ibrahim (2008). [Ph.D. Thesis, University of Glasgow]. https://eleanor.lib.gla.ac.uk/record=b2631383.
[4] K.J. Åström, Automatica 19 (1983) 471-486. https://doi.org/10.1016/0005-1098(83)90002-X.
[5] D.E. Seborg, T.F. Edgar, S.L. Shah, AIChE J. 32 (1986) 881-913. https://doi.org/10.1002/aic.690320602.
[6] C. Cao, L. Ma, Y. Xu, J. Control Sci. Eng. 2012 (2012) 1-2. https://doi.org/10.1155/2012/827353.
[7] P. Jain, M.J. Nigam, Adv. Electron. Electr. Eng. 3 (2013) 477-484. https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=P.+Jain,+M.J.+Nigam,+Advance+in+Electronic+and+Electric+Engineering+3+%282013%29+477–484&btnG=
[8] S. Pankaj, J.S. Kumar, R.K. Nema, Innov. Syst. Des. Eng. 2 (2011) 154-162. https://www.researchgate.net/publication/277875091.
[9] R. Isermann, D. Matko, K.-H. Lachmann, Adaptive control systems, Prentice-Hall, Inc., United States (1992) p.180. https://dl.acm.org/doi/abs/10.5555/573881.
[10] P.-Y. Tsai, H.-C. Huang, Y.-J. Chen, R.-C. Hwang, The model reference control by auto-tuning PID-like fuzzy controller, Proc. IEEE Int. Conf. Control Appl., Taipei, Taiwan (2004), p.406. https://doi.org/10.1109/CCA.2004.1387245.
[11] P. Swarnkar, S. Jain, R.K. Nema, Int. J. Inf. Control Comput. Sci. 4 (2010) 1547-1552. https://scholarly.org/pdf/display/effect-of-adaptation-gain-on-system-performance-for-model-reference-adaptive-control-scheme-using-mit-rule.
[12] Y. Xu, J. Zhang, F. Liao, Adv. Differ. Equ. 2015 (2015) 1-17. https://doi.org/10.1186/s13662-015-0596-2.
[13] A. Shekhar, A. Sharma, Review of model reference adaptive control, Int. Conf. Inf., Commun., Eng. Technol. (ICICET), IEEE, Pune, India (2018), p. 1. https://doi.org/10.1109/ICICET.2018.8533713.
[14] S. Coman, C. Boldisor, C. Ciusdel, Combining the MIT and Lyapunov stability adaptive methods for second order systems, Int. Conf. Development Appl. Syst. (DAS), Suceava, Romania (2018), p. 31. https://doi.org/10.1109/DAAS.2018.8396066.
[15] [15] K.J. Åström, B. Wittenmark, Adaptive control, Courier Corporation, Lund, (2013), p.89. https://books.google.com.tr/books?id=4CLCAgAAQBAJ&hl=tr&source=gbs_book_other_versions.
[16] M.S. Ehsani, Adaptive control of servo motor by MRAC method, Veh. Power Propul. Conf., IEEE, Arlington, TX, USA (2007), p.78. https://doi.org/10.1109/VPPC.2007.4544102.
[17] T.J. McAvoy, E. Hsu, S. Lowenthal, Ind. Eng. Chem. Process Des. Develop. 11 (1972) 68-70. https://pubs.acs.org/doi/pdf/10.1021/i260041a013.
[18] D. Gupta, A. Kumar, V.K. Giri, Trans. Inst. Meas. Control 46 (2023) 1635-1654. https://doi.org/10.1177/01423312231203483.
[19] P. Swarnkar, S. Jain, R.K. Nema, Eng. Technol. Appl. Sci. Res. 1 (2011) 70-75. https://doi.org/10.48084/etasr.11.
[20] D. DINAKIN, P. OLUSEYİ, Turk. J. Eng. 5 (2021) 141-153. https://doi.org/10.31127/tuje.668840.
[21] T. Marlin, Process Control: Designing Processes and Control Systems for Dynamic Performance, McGraw-Hill, New York, (2000), p.98. https://library.wur.nl/WebQuery/titel/915137.
[22] H. Gai, X. Li, F. Jiao, X. Cheng, X. Yang, G. Zheng, Machines 9 (2021) 1-18. https://doi.org/10.3390/machines9110274.
[23] E. Mathew, T. Pawar, B.J. Pandian, Control of a coupled CSTR process using MRAC-MIT rule, Innov. Power Adv. Comput. Technol. (i-PACT), IEEE, Vellore, India (2019), p. 1. https://doi.org/10.1109/i-PACT44901.2019.8960078.
[24] Q. Luo, A. An, M. Wang, Model reference adaptive control for microbial fuel cell (MFC), Int. Conf. Rob., Control Autom., Guangzhou, China (2019), p.53. https://doi.org/10.1145/3351180.3351197.
[25] B. Singh, M. Kashif, IEEE Trans. Ind. Electron. 70 (2022) 11390-11400. https://doi.org/10.1109/TIE.2022.3227276.
[26] N.T. Nguyen, N.T. Nguyen, Model-reference adaptive control, Springer, Cham, (2018), p.83. https://doi.org/10.1007/978-3-319-56393-0_5.
[27] A.R. Babu, S. Kibreab, S. Mehari, Int. Res. J. Eng. Technol. 7 (2020) 1504-1509. https://www.irjet.net/archives/V7/i10/IRJET-V7I10256.pdf.
[28] M. Whitby, L. Cardelli, M. Kwiatkowska, L. Laurenti, M. Tribastone, M. Tschaikowski, IEEE Trans. Automat. Control 67 (2021) 1023-1030. https://doi.org/10.1109/TAC.2021.3062544.
[29] R. Ranganayakulu, A. Seshagiri Rao, G. Uday Bhaskar Babu, Int. J. Syst. Sci. 51 (2020) 1699-1713. https://doi.org/10.1080/00207721.2020.1773571.
[30] S.A.S. Adly, N. Mohd, IOP Conf. Ser.: Mater. Sci. Eng. 1257 012038 (2022) p.1-6. https://doi.org/10.1088/1757-899X/1257/1/012038.
[31] S. Ertunc, B. Akay, H. Boyacioglu, H. Hapoglu, Food Bioprod. Process. 87 (2009) 46-55. https://doi.org/10.1016/j.fbp.2008.04.003.
[32] S. Ertunc, B. Akay, N. Bursali, H. Hapoğlu, M. Alpbaz, Food Bioprod. Process. 81 (2003) 327-335. https://doi.org/10.1205/096030803322756411.
[33] M. Kazemi, M.M. Arefi, Trans. Inst. Meas. Control 40 (2018) 1538-1553. https://doi.org/10.1177/0142331216685395.
[34] N. Bursali, B. Akay, S. Ertunc, H. Hapoglu, M. Alpbaz, Food Bioprod. Process. 79 (2001) 27-34. https://doi.org/10.1205/09603080151123335.
[35] S. Altuntas, H. Hapoğlu, S. Ertunç, M. Alpbaz, Gazi Üniv. Mühendislik Mimarlık Fak. Derg. 31 (2016) 710-717. https://doi.org/10.17341/gummfd.73648.
[36] G.K.M. Hong, M.A. Hussain, A.K.A. Wahab, Chin. J. Chem. Eng. 40 (2021) 149-159. https://doi.org/10.1016/j.cjche.2021.03.057.
[37] M.M. Blagoveshchenskaya, V.G. Blagoveshchenskiy, S.C.M. Rogelio, A.N. Petryakov, J. Phys. Conf. Ser. (2020) 1-8. https://doi.org/10.1088/1742-6596/1705/1/012027.
[38] H. Goud, P. Swarnkar, Int. J. Chem. React. Eng. 17 (2019) 1-11. https://doi.org/10.1515/ijcre-2018-0199.
[39] J. Ritonja, A. Goršek, D. Pečar, Appl. Sci. 10 (2020) 1-23. https://doi.org/10.3390/app10249118.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zeynep Yilmazer Hitit

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.



