ADVANCED pH NEUTRALIZATION CONTROL USING MODEL REFERENCE ADAPTIVE CONTROL (MRAC) WITH MIT RULE

Original scientific paper

Authors

DOI:

https://doi.org/10.2298/CICEQ250618027H

Keywords:

Model Reference Adaptive Control (MRAC), MIT Rule, Adaptation gain, PID control, Nonlinear Systems, pH Neutralization

Abstract

This study presents the design and implementation of a Model Reference Adaptive Controller (MRAC) using the Massachusetts Institute of Technology (MIT) rule for a pH neutralization process in a continuous reactor. The inherent nonlinearity of acid-base reactions makes conventional Proportional–Integral–Derivative (PID) control insufficient in handling rapid pH variations. To address this, an adaptive control strategy was proposed, allowing the system to dynamically adjust control parameters based on real-time deviations from the reference model. The adaptation gain (γ) played a critical role in system stability and performance, with simulations and experimental results confirming that γ = 0.025 yielded optimal response characteristics. Higher adaptation gains accelerated convergence but introduced oscillations, while lower values slowed the response. MATLAB/Simulink simulations and real-time experimental validation demonstrated that MRAC effectively stabilized the system, achieving faster settling time and improved tracking performance compared to PID control. The findings suggest that MRAC with the MIT rule is a viable alternative for complex nonlinear processes, offering improved robustness against disturbances and set-point variations. Further enhancements, including the Normalized MIT rule and polynomial modeling, could further refine the controller’s effectiveness in industrial applications.

References

[1] S.D. Kambale, S. George, R.G. Zope, Int. Res. J. Eng. Technol. 2 (2015) 354-361. https://www.irjet.net/archives/V2/i3/Irjet-v2i365.pdf.

[2] N.H.S. Abdullah, M.N. Karsiti, R. Ibrahim, A review of pH neutralization process control, Int. Conf. Intell. Adv. Syst., Kuala Lumpur, Malaysia (2012), p. 594. https://doi.org/10.1109/ICIAS.2012.6306084.

[3] L. Ibrahim (2008). [Ph.D. Thesis, University of Glasgow]. https://eleanor.lib.gla.ac.uk/record=b2631383.

[4] K.J. Åström, Automatica 19 (1983) 471-486. https://doi.org/10.1016/0005-1098(83)90002-X.

[5] D.E. Seborg, T.F. Edgar, S.L. Shah, AIChE J. 32 (1986) 881-913. https://doi.org/10.1002/aic.690320602.

[6] C. Cao, L. Ma, Y. Xu, J. Control Sci. Eng. 2012 (2012) 1-2. https://doi.org/10.1155/2012/827353.

[7] P. Jain, M.J. Nigam, Adv. Electron. Electr. Eng. 3 (2013) 477-484. https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=P.+Jain,+M.J.+Nigam,+Advance+in+Electronic+and+Electric+Engineering+3+%282013%29+477–484&btnG=

[8] S. Pankaj, J.S. Kumar, R.K. Nema, Innov. Syst. Des. Eng. 2 (2011) 154-162. https://www.researchgate.net/publication/277875091.

[9] R. Isermann, D. Matko, K.-H. Lachmann, Adaptive control systems, Prentice-Hall, Inc., United States (1992) p.180. https://dl.acm.org/doi/abs/10.5555/573881.

[10] P.-Y. Tsai, H.-C. Huang, Y.-J. Chen, R.-C. Hwang, The model reference control by auto-tuning PID-like fuzzy controller, Proc. IEEE Int. Conf. Control Appl., Taipei, Taiwan (2004), p.406. https://doi.org/10.1109/CCA.2004.1387245.

[11] P. Swarnkar, S. Jain, R.K. Nema, Int. J. Inf. Control Comput. Sci. 4 (2010) 1547-1552. https://scholarly.org/pdf/display/effect-of-adaptation-gain-on-system-performance-for-model-reference-adaptive-control-scheme-using-mit-rule.

[12] Y. Xu, J. Zhang, F. Liao, Adv. Differ. Equ. 2015 (2015) 1-17. https://doi.org/10.1186/s13662-015-0596-2.

[13] A. Shekhar, A. Sharma, Review of model reference adaptive control, Int. Conf. Inf., Commun., Eng. Technol. (ICICET), IEEE, Pune, India (2018), p. 1. https://doi.org/10.1109/ICICET.2018.8533713.

[14] S. Coman, C. Boldisor, C. Ciusdel, Combining the MIT and Lyapunov stability adaptive methods for second order systems, Int. Conf. Development Appl. Syst. (DAS), Suceava, Romania (2018), p. 31. https://doi.org/10.1109/DAAS.2018.8396066.

[15] [15] K.J. Åström, B. Wittenmark, Adaptive control, Courier Corporation, Lund, (2013), p.89. https://books.google.com.tr/books?id=4CLCAgAAQBAJ&hl=tr&source=gbs_book_other_versions.

[16] M.S. Ehsani, Adaptive control of servo motor by MRAC method, Veh. Power Propul. Conf., IEEE, Arlington, TX, USA (2007), p.78. https://doi.org/10.1109/VPPC.2007.4544102.

[17] T.J. McAvoy, E. Hsu, S. Lowenthal, Ind. Eng. Chem. Process Des. Develop. 11 (1972) 68-70. https://pubs.acs.org/doi/pdf/10.1021/i260041a013.

[18] D. Gupta, A. Kumar, V.K. Giri, Trans. Inst. Meas. Control 46 (2023) 1635-1654. https://doi.org/10.1177/01423312231203483.

[19] P. Swarnkar, S. Jain, R.K. Nema, Eng. Technol. Appl. Sci. Res. 1 (2011) 70-75. https://doi.org/10.48084/etasr.11.

[20] D. DINAKIN, P. OLUSEYİ, Turk. J. Eng. 5 (2021) 141-153. https://doi.org/10.31127/tuje.668840.

[21] T. Marlin, Process Control: Designing Processes and Control Systems for Dynamic Performance, McGraw-Hill, New York, (2000), p.98. https://library.wur.nl/WebQuery/titel/915137.

[22] H. Gai, X. Li, F. Jiao, X. Cheng, X. Yang, G. Zheng, Machines 9 (2021) 1-18. https://doi.org/10.3390/machines9110274.

[23] E. Mathew, T. Pawar, B.J. Pandian, Control of a coupled CSTR process using MRAC-MIT rule, Innov. Power Adv. Comput. Technol. (i-PACT), IEEE, Vellore, India (2019), p. 1. https://doi.org/10.1109/i-PACT44901.2019.8960078.

[24] Q. Luo, A. An, M. Wang, Model reference adaptive control for microbial fuel cell (MFC), Int. Conf. Rob., Control Autom., Guangzhou, China (2019), p.53. https://doi.org/10.1145/3351180.3351197.

[25] B. Singh, M. Kashif, IEEE Trans. Ind. Electron. 70 (2022) 11390-11400. https://doi.org/10.1109/TIE.2022.3227276.

[26] N.T. Nguyen, N.T. Nguyen, Model-reference adaptive control, Springer, Cham, (2018), p.83. https://doi.org/10.1007/978-3-319-56393-0_5.

[27] A.R. Babu, S. Kibreab, S. Mehari, Int. Res. J. Eng. Technol. 7 (2020) 1504-1509. https://www.irjet.net/archives/V7/i10/IRJET-V7I10256.pdf.

[28] M. Whitby, L. Cardelli, M. Kwiatkowska, L. Laurenti, M. Tribastone, M. Tschaikowski, IEEE Trans. Automat. Control 67 (2021) 1023-1030. https://doi.org/10.1109/TAC.2021.3062544.

[29] R. Ranganayakulu, A. Seshagiri Rao, G. Uday Bhaskar Babu, Int. J. Syst. Sci. 51 (2020) 1699-1713. https://doi.org/10.1080/00207721.2020.1773571.

[30] S.A.S. Adly, N. Mohd, IOP Conf. Ser.: Mater. Sci. Eng. 1257 012038 (2022) p.1-6. https://doi.org/10.1088/1757-899X/1257/1/012038.

[31] S. Ertunc, B. Akay, H. Boyacioglu, H. Hapoglu, Food Bioprod. Process. 87 (2009) 46-55. https://doi.org/10.1016/j.fbp.2008.04.003.

[32] S. Ertunc, B. Akay, N. Bursali, H. Hapoğlu, M. Alpbaz, Food Bioprod. Process. 81 (2003) 327-335. https://doi.org/10.1205/096030803322756411.

[33] M. Kazemi, M.M. Arefi, Trans. Inst. Meas. Control 40 (2018) 1538-1553. https://doi.org/10.1177/0142331216685395.

[34] N. Bursali, B. Akay, S. Ertunc, H. Hapoglu, M. Alpbaz, Food Bioprod. Process. 79 (2001) 27-34. https://doi.org/10.1205/09603080151123335.

[35] S. Altuntas, H. Hapoğlu, S. Ertunç, M. Alpbaz, Gazi Üniv. Mühendislik Mimarlık Fak. Derg. 31 (2016) 710-717. https://doi.org/10.17341/gummfd.73648.

[36] G.K.M. Hong, M.A. Hussain, A.K.A. Wahab, Chin. J. Chem. Eng. 40 (2021) 149-159. https://doi.org/10.1016/j.cjche.2021.03.057.

[37] M.M. Blagoveshchenskaya, V.G. Blagoveshchenskiy, S.C.M. Rogelio, A.N. Petryakov, J. Phys. Conf. Ser. (2020) 1-8. https://doi.org/10.1088/1742-6596/1705/1/012027.

[38] H. Goud, P. Swarnkar, Int. J. Chem. React. Eng. 17 (2019) 1-11. https://doi.org/10.1515/ijcre-2018-0199.

[39] J. Ritonja, A. Goršek, D. Pečar, Appl. Sci. 10 (2020) 1-23. https://doi.org/10.3390/app10249118.

Published

04.12.2025

Issue

Section

Article

How to Cite

ADVANCED pH NEUTRALIZATION CONTROL USING MODEL REFERENCE ADAPTIVE CONTROL (MRAC) WITH MIT RULE: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250618027H

Similar Articles

21-30 of 105

You may also start an advanced similarity search for this article.