ENHANCING pH CONTROL IN A BIOREACTOR THROUGH EXPERIMENTAL SYSTEM IDENTIFICATION AND DYNAMIC ANALYSIS
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ250610032HKeywords:
Dynamic analysis, system identification, FOPDT model;, ARMAX model, theoretical PID controlAbstract
The acidic by-products produced during fermentation can cause a drop in pH, which in turn affects the microorganisms' growth and the product's formation. In order to keep pH at the desired level, process control becomes necessary. The aim of this study is to develop a predictive model for pH behavior during the fermentation of Clostridium acetobutylicum through dynamic analysis and system identification. The First Order Plus Dead Time (FOPDT) model and the second-order Autoregressive Moving Average with Exogenous (ARMAX) model were the two approaches that were compared. While the FOPDT model was used to derive the PID controller parameters through transient analysis, the Smith and linear regression methods, the ARMAX model—identified with the Recursive Least Squares (RLS) method—was chosen for its better accuracy in capturing input-output dynamics. PID tuning was done with the Cohen-Coon method. The simulation results showed that setpoint tracking was successfully done, and the ARMAX model provided a more accurate representation of the system. The optimized PID controller recorded the minimum Integral of Squared Error (ISE) value of 50.82. This study points out effective modeling and control strategies for the production of stable pH during fermentation, thus providing very useful knowledge for other bioprocesses that require precise control.
References
[1] Q. Jin, M.F. Kirk, Front Environ. Sci. Eng. 6 (2018) 89-103. https://doi.org/10.3389/fenvs.2018.00021.
[2] H.I. Velázquez-Sánchez, A.R. Dominguez-Bocanegra, R. Aguilar-López, Fuel 235 (2019) 558–566. https://doi.org/https://doi.org/10.1016/j.fuel.2018.08.034.
[3] X. Wei, J. Feng, W. Cao, L. Guo, Fuel 300 (2021) 1-8. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121009.
[4] N. Al-Shorgani, M. Kalil, W. Yusoff, A. Hamid, Saudi J. Biol. Sci. 25 (2017) 339-348. https://doi.org/10.1016/j.sjbs.2017.03.020.
[5] Á. Fernández-Naveira, M.C. Veiga, C. Kennes, J. Chem. Technol. 92 (2017) 1178-1185. https://doi.org/https://doi.org/10.1002/jctb.5232.
[6] P.C. Hallenbeck, M. Abo-Hashesh, D. Ghosh, Bioresour. Technol. 110 (2012) 1-9. https://doi.org/https://doi.org/10.1016/j.biortech.2012.01.103.
[7] Q. Zhang, Z. Zhang, Y. Wang, D.-J. Lee, G. Li, X. Zhou, D. Jiang, B. Xu, C. Lu, Y. Li, X. Ge, Bioresour. Technol. 253 (2018) 382-386. https://doi.org/https://doi.org/10.1016/j.biortech.2018.01.017.
[8] Z.Y. Hitit, C. Zampol Lazaro, P.C. Hallenbeck, Int. J. Hydrogen Energy 42 (2017) 18832-18843. https://doi.org/10.1016/j.ijhydene.2017.05.161.
[9] Z.Y. Hitit, C.Z. Lazaro, P.C. Hallenbeck, Int. J. Hydrogen Energy 42 (2017) 6556-6566. https://doi.org/10.1016/j.ijhydene.2016.12.035.
[10] Z.Y. Hitit, C.Z. Lazaro, P.C. Hallenbeck, Int. J. Hydrogen Energy 42 (2017) 6578-6589. https://doi.org/10.1016/j.ijhydene.2016.12.122.
[11] C.Z. Lazaro, Z.Y. Hitit, P.C. Hallenbeck, Bioresour. Technol. 245 (2017) 123-131. https://doi.org/10.1016/j.biortech.2017.08.207.
[12] E. Judith Martínez, D. Blanco, X. Gómez, in Improving Biogas Production: Technological Challenges, Alternative Sources, Future Developments, H. Treichel, G. Fongaro Eds., Springer, Cham, (2019) 149-179. https://doi.org/10.1007/978-3-030-10516-7_7.
[13] P. Khongkliang, A. Jehlee, P. Kongjan, A. Reungsang, S. O-Thong, Int. J. Hydrogen Energy 44 (2019) 31841-31852. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.10.022.
[14] Z.Y. Hitit, H. Boyacioglu, B. Ozyurt, S. Ertunc, H. Hapoglu, B. Akay, Appl. Biochem. Biotechnol. 172 (2014) 3761-3775. https://doi.org/10.1007/s12010-014-0794-5.
[15] [15] Z.Y. Hitit, B. Ozyurt, S. Ertunc, in Yeast - Industrial Applications, A. Morata, I. Loira, Eds., InTech., Croatia (2017), p. 153. https://doi.org/10.5772/intechopen.70696.
[16] R. Zagrodnik, M. Laniecki, Bioresour. Technol. 194 (2015) 187-195. https://doi.org/https://doi.org/10.1016/j.biortech.2015.07.028.
[17] B.W. Bequette, Comput. Chem. Eng. 128 (2019) 538-556. https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.06.011.
[18] M. Rao, H. Qiu, A Textbook for Chemical, Mechanical and Electrical Engineers, Gordon and Breach Science Publishers, Newark (1994), p.105.
[19] T. Marlin, Process Control: Designing Processes and Control Systems for Dynamic Performance, McGraw-Hill, New York (2000), p. 208.
[20] M. Alpbaz, H. Hapoğlu, B. Akay, Proses Kontrol, Gazi Kitapevi, Ankara (2014), p. 89.
[21] A.R. Tavakolpour-Saleh, S.A.R. Nasib, A. Sepasyan, S.M. Hashemi, Aerosp. Sci. Technol. 43 (2015) 21-29. https://doi.org/https://doi.org/10.1016/j.ast.2015.02.013.
[22] B. Akay, S. Ertunc, N. Bursalı, H. Hapoglu, M. Alpbaz, Chem. Eng. Comm. 190 (2003) 999-1017. https://doi.org/10.1080/00986440302128.
[23] N. Bursali, S. Ertunc, B. Akay, V. Pamuk, H. Hapoğlu, M. Alpbaz, Food Bioprod. Process. 79 (2001) 242-249. https://doi.org/https://doi.org/10.1205/096030801753252315.
[24] [24] H.H. Boyacıoğlu H, Ertunç S, Int. J. of Secondary Metabolite (2017) 10-17. https://doi.org/10.21448/ijsm.252053
[25] S. Ertunc, B. Akay, H. Boyacioglu, H. Hapoglu, Food Bioprod. Process 87 (2009) 46-55. https://doi.org/https://doi.org/10.1016/j.fbp.2008.04.003.
[26] S. Ertunç, B. Akay, N. Bursali, H. Hapoğlu, M. Alpbaz, Food Bioprod. Process. 81 (2003) 327-335. https://doi.org/https://doi.org/10.1205/096030803322756411.
[27] M. Albino, C.L. Gargalo, G. Nadal-Rey, M.O. Albæk, U. Krühne, K.V. Gernaey, Processes 12 (2024) 1-18. https://doi.org/10.3390/pr12081635.
[28] J. Pinto, M. Mestre, J. Ramos, R.S. Costa, G. Striedner, R. Oliveira, Comput. Chem. Eng. 165 (2022) 1-10. https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.107952.
[29] E. Bolmanis, K. Dubencovs, A. Suleiko, J. Vanags, Fermentation 9 (2023) 1-28. https://doi.org/10.3390/fermentation9030206.
[30] J. Escobar, A. Poznyak, Mathematics 10 (2022) 1-38. https://doi.org/10.3390/math10081291.
[31] [31] P. Mohindru, Artif. Intell. Rev. 57 (2024) 97-124. https://doi.org/10.1007/s10462-024-10743-0.
[32] R.M.M. Ziara, D.N. Miller, J. Subbiah, B.I. Dvorak, Int. J. Hydrogen Energy 44 (2019) 661-673. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.11.045.
[33] S. Altuntas, H. Hapoğlu, S. Ertunç, M. Alpbaz, Gazi Üniv. Mühendislik Mimarlık Fak. Derg. 31 (2016) 710-717. https://doi.org/10.17341/gummfd.73648
[34] G. Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice, PTR Prentice Hall (1984), p. 203.
[35] J.A. Bailey, J.E. Bailey, J. Bailey, R.J. Simpson, D.F. Ollis, D.F. Ollis, Biochem. Eng. Fundamentals, McGraw-Hill (1986) p.208. https://books.google.ca/books?id=KM9TAAAAMAAJ
[36] D. Montecchio, Y. Yuan, F. Malpei, Int. J. Hydrogen Energy 43 (2018) 17588-17601. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.07.146.
[37] J. Valentín-Reyes, R.B. García-Reyes, A. García-González, L.H. Álvarez-Valencia, P. Rivas-García, F. de J. Cerino-Córdova, Int. J. Hydrogen Energy 43 (2018) 17602-17610. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.07.200.
[38] I. Monroy, E. Guevara-López, G. Buitrón, Biochem. Eng. J. 135 (2018) 1-10. https://doi.org/https://doi.org/10.1016/j.bej.2018.01.026.
[39] N.S. Jamali, J. Md Jahim, S. O-Thong, A. Jehlee, Int. J. Hydrogen Energy 44 (2019) 9256-9271. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.02.116.
[40] I. Torres Zúñiga, A. Villa-Leyva, A. Vargas, G. Buitrón, Chem. Eng. Sci. 190 (2018) 48-59. https://doi.org/https://doi.org/10.1016/j.ces.2018.05.039.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zeynep Yilmazer Hitit, Gamze Demirtas, Bulent Akay

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.



