ENHANCING pH CONTROL IN A BIOREACTOR THROUGH EXPERIMENTAL SYSTEM IDENTIFICATION AND DYNAMIC ANALYSIS

Original scientific paper

Authors

DOI:

https://doi.org/10.2298/CICEQ250610032H

Keywords:

Dynamic analysis, system identification, FOPDT model;, ARMAX model, theoretical PID control

Abstract

The acidic by-products produced during fermentation can cause a drop in pH, which in turn affects the microorganisms' growth and the product's formation. In order to keep pH at the desired level, process control becomes necessary. The aim of this study is to develop a predictive model for pH behavior during the fermentation of Clostridium acetobutylicum through dynamic analysis and system identification. The First Order Plus Dead Time (FOPDT) model and the second-order Autoregressive Moving Average with Exogenous (ARMAX) model were the two approaches that were compared. While the FOPDT model was used to derive the PID controller parameters through transient analysis, the Smith and linear regression methods, the ARMAX model—identified with the Recursive Least Squares (RLS) method—was chosen for its better accuracy in capturing input-output dynamics. PID tuning was done with the Cohen-Coon method. The simulation results showed that setpoint tracking was successfully done, and the ARMAX model provided a more accurate representation of the system. The optimized PID controller recorded the minimum Integral of Squared Error (ISE) value of 50.82. This study points out effective modeling and control strategies for the production of stable pH during fermentation, thus providing very useful knowledge for other bioprocesses that require precise control.

References

[1] Q. Jin, M.F. Kirk, Front Environ. Sci. Eng. 6 (2018) 89-103. https://doi.org/10.3389/fenvs.2018.00021.

[2] H.I. Velázquez-Sánchez, A.R. Dominguez-Bocanegra, R. Aguilar-López, Fuel 235 (2019) 558–566. https://doi.org/https://doi.org/10.1016/j.fuel.2018.08.034.

[3] X. Wei, J. Feng, W. Cao, L. Guo, Fuel 300 (2021) 1-8. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121009.

[4] N. Al-Shorgani, M. Kalil, W. Yusoff, A. Hamid, Saudi J. Biol. Sci. 25 (2017) 339-348. https://doi.org/10.1016/j.sjbs.2017.03.020.

[5] Á. Fernández-Naveira, M.C. Veiga, C. Kennes, J. Chem. Technol. 92 (2017) 1178-1185. https://doi.org/https://doi.org/10.1002/jctb.5232.

[6] P.C. Hallenbeck, M. Abo-Hashesh, D. Ghosh, Bioresour. Technol. 110 (2012) 1-9. https://doi.org/https://doi.org/10.1016/j.biortech.2012.01.103.

[7] Q. Zhang, Z. Zhang, Y. Wang, D.-J. Lee, G. Li, X. Zhou, D. Jiang, B. Xu, C. Lu, Y. Li, X. Ge, Bioresour. Technol. 253 (2018) 382-386. https://doi.org/https://doi.org/10.1016/j.biortech.2018.01.017.

[8] Z.Y. Hitit, C. Zampol Lazaro, P.C. Hallenbeck, Int. J. Hydrogen Energy 42 (2017) 18832-18843. https://doi.org/10.1016/j.ijhydene.2017.05.161.

[9] Z.Y. Hitit, C.Z. Lazaro, P.C. Hallenbeck, Int. J. Hydrogen Energy 42 (2017) 6556-6566. https://doi.org/10.1016/j.ijhydene.2016.12.035.

[10] Z.Y. Hitit, C.Z. Lazaro, P.C. Hallenbeck, Int. J. Hydrogen Energy 42 (2017) 6578-6589. https://doi.org/10.1016/j.ijhydene.2016.12.122.

[11] C.Z. Lazaro, Z.Y. Hitit, P.C. Hallenbeck, Bioresour. Technol. 245 (2017) 123-131. https://doi.org/10.1016/j.biortech.2017.08.207.

[12] E. Judith Martínez, D. Blanco, X. Gómez, in Improving Biogas Production: Technological Challenges, Alternative Sources, Future Developments, H. Treichel, G. Fongaro Eds., Springer, Cham, (2019) 149-179. https://doi.org/10.1007/978-3-030-10516-7_7.

[13] P. Khongkliang, A. Jehlee, P. Kongjan, A. Reungsang, S. O-Thong, Int. J. Hydrogen Energy 44 (2019) 31841-31852. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.10.022.

[14] Z.Y. Hitit, H. Boyacioglu, B. Ozyurt, S. Ertunc, H. Hapoglu, B. Akay, Appl. Biochem. Biotechnol. 172 (2014) 3761-3775. https://doi.org/10.1007/s12010-014-0794-5.

[15] [15] Z.Y. Hitit, B. Ozyurt, S. Ertunc, in Yeast - Industrial Applications, A. Morata, I. Loira, Eds., InTech., Croatia (2017), p. 153. https://doi.org/10.5772/intechopen.70696.

[16] R. Zagrodnik, M. Laniecki, Bioresour. Technol. 194 (2015) 187-195. https://doi.org/https://doi.org/10.1016/j.biortech.2015.07.028.

[17] B.W. Bequette, Comput. Chem. Eng. 128 (2019) 538-556. https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.06.011.

[18] M. Rao, H. Qiu, A Textbook for Chemical, Mechanical and Electrical Engineers, Gordon and Breach Science Publishers, Newark (1994), p.105.

[19] T. Marlin, Process Control: Designing Processes and Control Systems for Dynamic Performance, McGraw-Hill, New York (2000), p. 208.

[20] M. Alpbaz, H. Hapoğlu, B. Akay, Proses Kontrol, Gazi Kitapevi, Ankara (2014), p. 89.

[21] A.R. Tavakolpour-Saleh, S.A.R. Nasib, A. Sepasyan, S.M. Hashemi, Aerosp. Sci. Technol. 43 (2015) 21-29. https://doi.org/https://doi.org/10.1016/j.ast.2015.02.013.

[22] B. Akay, S. Ertunc, N. Bursalı, H. Hapoglu, M. Alpbaz, Chem. Eng. Comm. 190 (2003) 999-1017. https://doi.org/10.1080/00986440302128.

[23] N. Bursali, S. Ertunc, B. Akay, V. Pamuk, H. Hapoğlu, M. Alpbaz, Food Bioprod. Process. 79 (2001) 242-249. https://doi.org/https://doi.org/10.1205/096030801753252315.

[24] [24] H.H. Boyacıoğlu H, Ertunç S, Int. J. of Secondary Metabolite (2017) 10-17. https://doi.org/10.21448/ijsm.252053

[25] S. Ertunc, B. Akay, H. Boyacioglu, H. Hapoglu, Food Bioprod. Process 87 (2009) 46-55. https://doi.org/https://doi.org/10.1016/j.fbp.2008.04.003.

[26] S. Ertunç, B. Akay, N. Bursali, H. Hapoğlu, M. Alpbaz, Food Bioprod. Process. 81 (2003) 327-335. https://doi.org/https://doi.org/10.1205/096030803322756411.

[27] M. Albino, C.L. Gargalo, G. Nadal-Rey, M.O. Albæk, U. Krühne, K.V. Gernaey, Processes 12 (2024) 1-18. https://doi.org/10.3390/pr12081635.

[28] J. Pinto, M. Mestre, J. Ramos, R.S. Costa, G. Striedner, R. Oliveira, Comput. Chem. Eng. 165 (2022) 1-10. https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.107952.

[29] E. Bolmanis, K. Dubencovs, A. Suleiko, J. Vanags, Fermentation 9 (2023) 1-28. https://doi.org/10.3390/fermentation9030206.

[30] J. Escobar, A. Poznyak, Mathematics 10 (2022) 1-38. https://doi.org/10.3390/math10081291.

[31] [31] P. Mohindru, Artif. Intell. Rev. 57 (2024) 97-124. https://doi.org/10.1007/s10462-024-10743-0.

[32] R.M.M. Ziara, D.N. Miller, J. Subbiah, B.I. Dvorak, Int. J. Hydrogen Energy 44 (2019) 661-673. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.11.045.

[33] S. Altuntas, H. Hapoğlu, S. Ertunç, M. Alpbaz, Gazi Üniv. Mühendislik Mimarlık Fak. Derg. 31 (2016) 710-717. https://doi.org/10.17341/gummfd.73648

[34] G. Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice, PTR Prentice Hall (1984), p. 203.

[35] J.A. Bailey, J.E. Bailey, J. Bailey, R.J. Simpson, D.F. Ollis, D.F. Ollis, Biochem. Eng. Fundamentals, McGraw-Hill (1986) p.208. https://books.google.ca/books?id=KM9TAAAAMAAJ

[36] D. Montecchio, Y. Yuan, F. Malpei, Int. J. Hydrogen Energy 43 (2018) 17588-17601. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.07.146.

[37] J. Valentín-Reyes, R.B. García-Reyes, A. García-González, L.H. Álvarez-Valencia, P. Rivas-García, F. de J. Cerino-Córdova, Int. J. Hydrogen Energy 43 (2018) 17602-17610. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.07.200.

[38] I. Monroy, E. Guevara-López, G. Buitrón, Biochem. Eng. J. 135 (2018) 1-10. https://doi.org/https://doi.org/10.1016/j.bej.2018.01.026.

[39] N.S. Jamali, J. Md Jahim, S. O-Thong, A. Jehlee, Int. J. Hydrogen Energy 44 (2019) 9256-9271. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.02.116.

[40] I. Torres Zúñiga, A. Villa-Leyva, A. Vargas, G. Buitrón, Chem. Eng. Sci. 190 (2018) 48-59. https://doi.org/https://doi.org/10.1016/j.ces.2018.05.039.

Downloads

Published

12.12.2025

Issue

Section

Article

How to Cite

ENHANCING pH CONTROL IN A BIOREACTOR THROUGH EXPERIMENTAL SYSTEM IDENTIFICATION AND DYNAMIC ANALYSIS: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250610032H

Similar Articles

1-10 of 118

You may also start an advanced similarity search for this article.