PERFORMANCE OPTIMIZATION OF ECM PARAMETERS FOR PALLADIUM COATED TOOL ELECTRODE USING MULTI-CRITERIA DECISION ANALYSIS METHOD

Original scientific paper

Authors

  • Nethaji Subash Chandra Bose Ayyavoo Department of Mechanical Engineering, Sona College of Technology, Salem, India
  • Saravanan Kandasamy Ganesan Department of Mechanical Engineering, Sona College of Technology, Salem, India
  • Niranjan Thiruchinapalli Department of Mechanical Engineering, Mahatma Gandhi Institute of Technology, Hyderabad, India

DOI:

https://doi.org/10.2298/CICEQ250516025B

Keywords:

Machining rate, overcut, orthogonal array, ANOVA, ascorbic acid, sputtering

Abstract

Electrochemical machining is an important process for fabricating difficult-to-cut materials. It is a much more advantageous process for creating excellent surface quality on a wide range of conductive materials. In this research, the electrode (cathode) is coated with less resistive palladium material through a sputtering process, and sodium electrolyte is added with 10 gl-1 ascorbic acid to improve Local electrolysis and reduce the sludge generation. The process parameters, specifically electrolyte concentration, machining voltage, duty cycle, and frequency, were varied on machining rate and overcut using the L27 orthogonal array experimental plan. ÉLimination Et Choix Traduisant la REalité (ELECTRE) is employed to find a suitable solution. Based on the ELECTRE method, the best factor combination is 29 g L-1electrolyte concentration, 12 V, 70% duty cycle, and 80 Hz frequency. The analysis of variance shows that machining voltage and electrolyte concentration are the considerable factors, with contribution percentages of 43.93% and 23.34%, respectively. As per the mean effect plot, the optimal combination is 29 g L-1 electrolyte concentration, 12 V, 90% duty cycle, and 80 Hz frequency.

 

References

[1] K. Srividya, S. Ravichandran, M. Thirunavukkarasu, I. Veeranjaneyulu, P. Satishkumar, K. Bharadwaja, N. Srinivasa Rao, R. Subbiah, J.E. Manikanta, Int. J. Interact. Des. Manuf. 18 (2024) 1459–1473. https://doi.org/10.1007/s12008-024-01761-x.

[2] K. Saranya, K. Haribabu, T. Venkatesh, K.G. Saravanan, Ramya Maranan, N. Rajan, Int. J. Interact. Des. Manuf. 18 (2024) 5015–5025. https://doi.org/10.1007/s12008-024-01811-4.

[3] P. Venugopal, T.G. Arul, R. Thanigaivelan, Ionics 28 (2022) 4745–4753. https://doi.org/10.1007/s11581-022-04686-1.

[4] G. Thangamani, M. Thangaraj, K. Moiduddin, H. Alkhalefah, S. Mahalingam, P. Karmiris-Obratanski, Materials 15 (2022) 4831. https://doi.org/10.3390/ma15144831.

[5] T.G. Arul, V. Perumal, R. Thanigaivelan, Chem. Ind. Chem. Eng. Q. 28 (2022) 247–253. https://doi.org/10.1080/10426914.2019.1697445.

[6] V. Palaniswamy, T. Rajasekaran, J. Electrochem. Sci. Eng. 13 (2023) 553–561. https://doi.org/10.5599/jese.1660.

[7] V. Palaniswamy, K. Seeniappan, T. Rajasekaran, N. Lakshmaiya, Chem. Ind. Chem. Eng. Q. 29 (2023) 201–208. https://doi.org/10.2298/CICEQ240220020PS.

[8] S. Maniraj, R. Thanigaivelan, Mater. Manuf. Process. 34 (2019) 1494–1501. https://doi.org/10.1080/10426914.2019.1655153.

[9] G. Cercal, G. de Alvarenga, M. Vidotti, Processes11 (2023) 2186. https://doi.org/10.3390/pr11072186.

[10] S. Wang, W. Wei, Y. Gao, H. Pan, Y. Wang, Vacuum 188 (2021) 110200. https://doi.org/10.1016/j.vacuum.2021.110200.

[11] Y. Ni, W. Wang, C. Tang, J. Sun, W. Zhang, W. Gao, J. Zou, J. Mater. Sci. Mater. Electron. 35 (2024) 770. https://doi.org/10.1007/s10854-024-12537-0.

[12] S. Saha, A.K.Mondal, R. Čep, H. Joardar, B. Haldar, A. Kumar, S. Ataya, Machines 12 (2024) 335. https://doi.org/10.3390/machines12050335.

[13] T. Niranjan, R. Thanigaivelan, B. Singaravel, Innovations in Mechanical Engineering: Select Proceedings of ICIME, G.S.V.L. Narasimham, A.V. Babu, S.S. Reddy, R. Dhanasekaran, (Eds.), Springer, Singapore (2022), pp. 797–807. https://doi.org/10.1007/978-981-16-7282-8_60.

[14] W. Chu, M. Vicidomini, F. Calise, N. Duić, PA. Østergaard, Q. Wang, M. da GraçaCarvalho, Energies 15 (2022) 7129. https://doi.org/10.3390/en15197129.

[15] M. Carra, F. Botticini, F.C. Pavesi, G. Maternini, M. Pezzagno, B. Barabino, Transp. Res. Proced. 69 (2023) 448–455. https://doi.org/10.1016/j.trpro.2023.02.194.

[16] J. Ye, T.Y. Chen, J. Nat. Fibers 20 (2023) 2201486. https://doi.org/10.1080/15440478.2023.2201486.

[17] G. Salvador, M. Moura, P. Campos, P. Cardoso, P. Espadinha-Cruz, R. Godina, Proced. Comput. Sci. 232 (2024) 1759–1768. https://doi.org/10.1016/j.procs.2024.01.174.

[18] E.P. Özmen, B. Demir, Sigma J. Eng. Nat. Sci. 41 (2023) 232–242. https://dergipark.org.tr/en/pub/sigma/issue/83129/1403041.

[19] M.K. Dikshit, S. Singh, V.K. Pathak, K.K. Saxena, M.K. Agrawal, V. Malik, M.I. Khan, J. Mater. Res. Technol. 24 (2023) 223–235. https://doi.org/10.1016/j.jmrt.2023.03.005.

[20] U.A. Kamarulzaman, M.Y.A. Rahman, M.S. Su’ait, A.A. Umar, Chem. Pap. 77 (2023) 4625–4632. https://doi.org/10.1007/s11696-023-02812-5.

[21] A. Ngoipala, R. Lipin, R.L. Arevalo, M. Vandichel, Int. J. Hydrogen Energy 53 (2024) 829–839. https://doi.org/10.1016/j.ijhydene.2023.12.019.

[22] D. Mekebo, B.S. Chandravanshi, Bull. Chem. Soc. Ethiop. 28 (2014) 349–62. https://doi.org/10.4314/bcse.v28i3.4.

[23] N. Sivashankar, R. Thanigaivelan, K.G. Saravanan, Bull. Chem. Soc. Ethiop. 37 (2014) 1263–1273. https://doi.org/10.4314/bcse.v37i5.17.

[24] P.R. Kannan, R. Thanigaivelan, R. Thiraviam, K.P. Kumar, Mater. Sci. Pol. 41 (2023) 288–300. https://doi.org/10.2478/msp-2023-0020.

Published

— Updated on 13.09.2025

Issue

Section

Article

How to Cite

PERFORMANCE OPTIMIZATION OF ECM PARAMETERS FOR PALLADIUM COATED TOOL ELECTRODE USING MULTI-CRITERIA DECISION ANALYSIS METHOD: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250516025B

Similar Articles

1-10 of 69

You may also start an advanced similarity search for this article.