POTENTIAL OF ULTRASONIC IRRADIATION IN POLYURETHANE DEGRADATION IN DEEP EUTECTIC SOLVENTS

Original scientific paper

Authors

  • Amirah Nasuha Mohd Razib Faculty of Chemical Engineering & Technology, University Malaysia Perlis, Perlis, Malaysia and Center of Excellence for Frontier Materials Research (FrontMate), University Malaysia Perlis, Perlis, Malaysia
  • Nik Muhammad Azhar Nik Daud Faculty of Chemical Engineering & Technology, University Malaysia Perlis, Perlis, Malaysia
  • Mohd Al Hafiz Mohd Nawi Faculty of Mechanical Engineering Technology, University Malaysia Perlis, Perlis, Malaysia
  • Banu Ramasamy Faculty of Chemical Engineering & Technology, University Malaysia Perlis, Perlis, Malaysia
  • Mohd Sharizan Sharizan Md Sarip Faculty of Chemical Engineering & Technology, University Malaysia Perlis, Perlis, Malaysia and Center of Excellence for Frontier Materials Research (FrontMate), University Malaysia Perlis, Perlis, Malaysia
  • Amirul Ridzuan Abu Bakar Faculty of Chemical Engineering & Technology, University Malaysia Perlis, Perlis, Malaysia
  • Mohd Asraf Mohd Zainudin Faculty of Chemical Engineering & Technology, University Malaysia Perlis, Perlis, Malaysia
  • Ahmad Hazim Abdul Aziz Faculty of Food Science and Nutrition, University Malaysia Sabah, Kota Kinabalu, Malaysia

DOI:

https://doi.org/10.2298/CICEQ250403023N

Keywords:

Ultrasonic, Polymer recycling, o-toluidine

Abstract

This study explores the degradation of polyurethane (PU) using deep eutectic solvents (DES) combined with ultrasonic irradiation, aiming to develop sustainable recycling techniques for PU waste. DES, formed from choline chloride and urea, possesses environmentally friendly properties such as low toxicity and high solubility, making it suitable for chemical recycling. Degradation experiments were conducted at elevated temperatures (130-150 °C), both with and without ultrasonic assistance. The technique of GPC is applied to determine the molecular weight of raw PU and the degradation product. The structures of DES, PU, and its degradation products were analysed using FTIR and NMR. The results indicate that the application of ultrasonics significantly enhances the degradation rate at approximately 5.20% from 58.51 ± 0.04% to 63.71 ± 0.03% at a constant temperature of 150 °C. This improvement is attributed to cavitation-induced effects, which facilitate polymer chain breakdown. Molecular transformations were confirmed through the presence of NH₃ groups resulting from the break of the PU structure to form o-toluidine, as identified by NMR. Reaction pathways were established through structural analysis of both raw PU and its degradation products. These findings demonstrate the potential of ultrasonic-assisted DES in advancing chemical recycling strategies for PU, addressing environmental concerns related to persistent PU waste, and promoting sustainable waste management practices.

References

R. Kaur, P. Singh, S. Tanwar, G. Varshney, S. Yadav, Macromol. 2 (2022) 284–314. https://doi.org/10.3390/macromol2030019.

[2] A. Das, P. Mahanwar, Adv. Ind. Eng. Polym. Res. 3 (2020) 93–101. https://doi.org/10.1016/j.aiepr.2020.07.002.

[3] A. Delavarde, G. Savin, P. Derkenne, M. Boursier, R. Morales-Cerrada, B. Nottelet, J. Pinaud, Prog. Polym. Sci. 151 (2024) 101805. https://doi.org/10.1016/j.progpolymsci.2024.101805.

[4] G. Yeligbayeva, M. Khaldun, A.A. Alfergani, Zh. Tleugaliyeva, A. Karabayeva, L. Bekbayeva, D. Zhetpisbay, N. Shadin, Z. Atabekova, Complex Use Miner. Resour. 331 (2024) 21-41. https://doi.org/10.31643/2024/6445.36.

[5] M. Ghezal, A. Moussa, I.B. Marzoug, A. El-Achari, C. Campagne, F. Sakli. Chem. Ind. Chem. Eng. Q. 31(2025) 95-104. https://doi.org/10.2298/CICEQ240202017G.

[6] X. Gao, J. Su, C. Xu, S. Cao, S. Gu, W. Sun, Z. You, ACS Nano. 18 (2024) 17913-17923. https://doi.org/10.1021/acsnano.4c04455.

[7] A. Kemona, M. Piotrowska, Polymers 12 (2020) 1752. https://doi.org/10.3390/polym12081752.

[8] M. Nees, M. Adeel, L. Pazdur, M. Porters, C.M. L. Vande Velde, P. Billen, ACS Omega. (2024) 4c04671. https://doi.org/10.1021/acsomega.4c04671.

[9] G. Rossignolo, G. Malucelli, A. Lorenzetti, Green Chem. 26 (2023) 1132-1152. https://doi.org/10.1039/d3gc02091f.

[10] J. Drzeżdżon, J. Datta, Waste Manag. 198, (2025), 21-45. https://org/10.1016/j.wasman.2025.02.043.

[11] H. Zhang, X. Cui, H. Wang, Y. Wang, Y. Zhao, H. Ma, L. Chai, Y. Wang, X. Hou, T. Deng, Polym. Degrad. Stab. 181 (2020) 109342. https://doi.org/10.1016/j.polymdegradstab.2020.109342.

[12] A. Shen , H. Xuan, Y. Jia, S. Gu, R. E. Neisiany,W.Shu, W.Sun, Z.You, Chem. Eng. J. 491(2024) 151896 https://doi.org/10.1016/j.cej.2024.151896.

[13] S. Jiang, Y. Wang, M. Tian, H. Zhang, R. Wang, H. Yan, H.Tan, R.E.Neisiany, W. Sun, Z. You, Chem. Eng. J. 504 (2025) 158881. https://doi.org/10.1016/j.cej.2024.158881.

[14] A. Karrech, H. Zhou, Circ. Econ. 4 (2025) 100129. https://doi.org/10.1016/j.cec.2025.100129.

[15] T. El Achkar, H. Greige-Gerges, S. Fourmentin, Environ. Chem. Lett. 19 (2021) 3397–3408. https://doi.org/10.1007/s10311-021-01225-8.

[16] S.A. Jen, N.M.A. Nik Daud, M.S. Md Sarip, K.A.F. Kamal Ramlee, A.R. Abu Bakar, Mohd M.A. Zainudin, K.A. Jantan, G. Siomara, J. Adv. Res. Micro Nano Eng. 35 (2025) 111–122. https://doi.org/10.37934/armne.35.1.111122.

[17] A.M. Abdul Rahman, A.R. Abu Bakar, A.Q. Yee, M.A. Mohd Zainudin, N.M.A. Nik Daud, A.A. Nagoor

Gunny, M.S. Md Sarip, R.V. Perona, N.H. Khairuddin, RSC Adv. 15 (2025) 4296-4321. https://doi.org/10.1039/D5RA00097A.

[18] S. Manickam, D.C. Boffito, E.M.M. Flores, J.M. Leveque, R. Pflieger, B.G. Pollet, M. Ashokkumar, Ultrason. Sonochem. 99 (2023) 106540. https://doi.org/10.1016/j.ultsonch.2023.106540.

[19] M.B. Johansen, B.S. Donslund, S.K. Kristensen, A.T. Lindhardt, T. Skrydstrup, ACS Sustain. Chem. Eng. 10 (2022) 11191–11202. https://doi.org/10.1021/acssuschemeng.2c02797.

[20] M. Viana, P. Jouannin, C. Pontier, D. Chulia, Talanta 57 (2002) 583-593. https://doi.org/10.1016/S0039-9140(02)00058-9.

[21] A.P. Abbott, R.C. Harris, K.S. Ryder, C. D’Agostino, L.F. Gladden, M.D. Mantle, Green Chem. 13 (2011) 82-90. https://doi.org/10.1039/C0GC00395F.

[22] K.A. Omar, R. Sadeghi, J. Mol. Liq. 360 (2022) 119524. https://doi.org/10.1016/j.molliq.2022.119524.

[23] W. Wang, Y. Xu, B. Zhu, H. Ge, S. Wang, B. Li, H. Xu, Bioresour. Technol. 385 (2023) 129401 https://doi.org/10.1016/j.biortech.2023.129401.

[24] R.J. Isaifan, A. Amhamed, Adv. Chem. 2018 (2018) 1–6. https://doi.org/10.1155/2018/2675659.

[25] H. Fang, K. Ni, J. Wu, J. Li, L. Huang, D. Reible, Int. J. Sediment Res. 34 (2019) 8-13. https://doi.org/10.1016/j.ijsrc.2018.10.008.

[26] C. Du, B. Zhao, X.B. Chen, N. Birbilis, H. Yang, Sci. Rep. 6 (2016) 1-14. https://doi.org/10.1038/srep29225.

[27] T. Jurić, D. Uka, B.B. Holló, B. Jović, B. Kordić, B.M. Popović, J. Mol. Liq. 343 (2021) 116968. https://doi.org/10.1016/j.molliq.2021.116968.

[28] D.J. Mohamed, N.J. Hadi, Z.K. Alobad, IOP Conf. Ser. Mater. Sci. Eng., 1094 (2021) 012157. https://doi.org/10.1088/1757-899x/1094/1/012157.

[29] A. Reghunadhan, S. Thomas, Elsevier Inc. (2017)

https://doi.org/10.1016/B978-0-12-804039-3.00001-4.

[30] G.W. Coates,Y.D.Y.L. Getzler, Nat. Rev. Mater. 5 (2020) 501–516. https://doi.org/10.1038/s41578-020-0190-4.

[31] Y. Elhamarnah, M. AlRasheedi, W. AlMarri, A. AlBadr, A. AlMalki, N. Mohamed, I. Fatima, M. Nasser, H. Qiblawey, Materials 15 (2022) 4027. https://doi.org/10.3390/ma15114027.

[32] O. A. Attallah, M. Azeem, E. Nikolaivits, E. Topakas, M. B. Fournet, Polymers (Basel), 14 (2022) 1–15. https://doi.org/10.3390/polym14010109.

[33] Y.H. Hsieh, Y. Li, Z. Pan, Z. Chen, J. Lu, J. Yuan, Z. Zhu, Ultrason. Sonochem. 63 (2019) 104915. https://doi.org/10.1016/j.ultsonch.2019.104915.

[34] J.K. Yan, Y.Y. Wang, H.L. Ma, Z.B. Wang, Ultrason. Sonochem. 29 (2016) 251–257. https://doi.org/10.1016/j.ultsonch.2015.10.005.

[35] A. Taha, E. Ahmed, A. Ismaiel, M. Ashokkumar, X. Xu, S. Pan, H. Hu, Trends Food Sci. Technol. 105 (2020) 363–377. https://doi.org/10.1016/j.tifs.2020.09.024.

[36] S. Xu, E. Liu, R. Gao, H. Du, Z. Chen, Q. Sun, J. Anal. Appl. Pyrolysis. 177 (2024) 106301. https://doi.org/10.1016/j.jaap.2023.106301.

[37] Y. Wang, H. Song, H. Ge, J. Wang, Y. Wang, S. Jia, T. Deng, J. Cleaner Prod. 176 (2018) 873–879. https://doi.org/10.1016/j.jclepro.2017.12.046.

[38] J.U. Izunobi, C.L. Higginbotham, J. Chem. Educ. 88 (2011) 1098–1104. https://doi.org/10.1021/jacsau.5c00496.

[39] L.V. Belleghem, R. Dirix, R.D. Oliveira, J. Wery, D. Sakellariou, N.V. Velthoven, D.D. Vos, JACS Au. 5 (2025) 3444-3452. https://doi.org/10.1021/jacsau.5c00496.

[40] J. Ma, G. Sun, D. Sun, F. Yu, M. Hu, T. Lu, Constr. Build. Mater. 278 (2021) 122386. https://doi.org/10.1016/j.conbuildmat.2021.122386.

[41] T. Singh, A. Dvivedi, A. Shanu, P. Dixit, J. Mater. Process. Technol. 293 (2020) 117084. https://doi.org/10.1016/j.jmatprotec.2021.117084.

[42] S. Shafique, A.S. Belousov, R. Rashid, I. Shafiq, K.H.H. Aziz, N. Riaz, M. Saqib Khan, A. Shaheen, M. Ishaq, P. Akhter, J. Mol. Liq. 419 (2024) 126769. https://doi.org/10.1016/j.molliq.2024.126769.

[43] J.P. Wasylka, M. Guardia, V. Andruch, M. Vilková, Microchem. J. 159 (2020) 105539 https://doi.org/10.1016/j.microc.2020.105539.

Published

— Updated on 09.09.2025

Issue

Section

Article

How to Cite

POTENTIAL OF ULTRASONIC IRRADIATION IN POLYURETHANE DEGRADATION IN DEEP EUTECTIC SOLVENTS: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250403023N

Funding data

Similar Articles

1-10 of 16

You may also start an advanced similarity search for this article.