FLUORIDE REMOVAL FROM PHOSPHOGYPSUM: A STUDY ON A PRE-INDUSTRIAL SCALE AND ITS MATHEMATICAL ANALYSIS Original scientific paper

Main Article Content

Cemre Avşar
https://orcid.org/0000-0002-8953-9859
Suna Ertunç
https://orcid.org/0000-0002-0139-7463

Abstract

This study discusses fluoride removal efficiency from phosphogypsum (PG) on a lab-scale experiment matrix designed by the Box-Behnken method. Temperature, solid/liquid ratio, and time were supposed to influence fluoride removal efficiency from PG by various salt solution media. Experiment matrices were designed according to salt solution types: seawater, 5% NaCl, and 10% NaCl solutions.  The factor-response analysis showed a direct proportionality between fluoride removal efficiency and temperature. The optimum fluoride removal conditions based on the experimental data obtained by the multi-variable design matrix were determined by the Design Expert v.12 software. The optimum temperature, time, and solid/liquid ratio were 80 °C, 3 h, and 0,174 for seawater. The software predicted a 73,31% fluoride removal efficiency at the optimum conditions, whereas the experimental value was 74,99%. Since the actual vs. predicted data show high consistency, results might also be useful when industrial-scale fluoride removal to a predetermined level is required prior to a particular use of PG. PG has a high potential as an alternative raw material, and fluoride removal might be important in recycling applications. This study provides a novel pre-industrial scale fluoride removal inventory, especially for the fertilizer and cement industry.

Article Details

How to Cite
Avşar, C., & Ertunç, S. . (2023). FLUORIDE REMOVAL FROM PHOSPHOGYPSUM: A STUDY ON A PRE-INDUSTRIAL SCALE AND ITS MATHEMATICAL ANALYSIS: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(1), 35–46. https://doi.org/10.2298/CICEQ230203009A
Section
Articles

References

M. Abdelhadi, N. Abdelhadi, T. El-Hasan, Earth Sci. Res. 7(2) (2018) 28—41. https://doi.org/10.3176/oil.2019.2S.12.

M. Singh, M. Garg, S.S. Rehsi, Const. Build. Mater. 7(1) (1993) 3—7. https://doi.org/10.1016/0950-0618(93)90018-8.

K. Chojnacka, D. Skrzypczak, K. Mikula, A. Witek-Krowiak, G. Izydorczyk, K. Kuligowski, P. Bandrow, M. Kulazynski, J. Clean. Prod. 313 (2021) 1—12. https://doi.org/10.1016/j.jclepro.2021.127902.

L.F.O. Silva, M. L. S. Oliveira, T.J. Crissien, M. Santosh, J. Bolivar, L. Shao, G.L. Dotto, J. Gasparotto, M. Schindler, Chemosphere 286(1) (2022) 1—14. https://doi.org/10.1016/j.chemosphere.2021.131513.

H. Salmenpera, K. Pitkänen, P. Kautto, L. Saikku, J. Clean. Prod. 280(1) (2021) 1—19. https://doi.org/10.1016/j.jclepro.2020.124339.

B. Karshiev, A. Seytnazarov, U. Alimov, S. Namazov, A. Reymov, A. Rasulov, Vopr. Khim. Khim. Tekhnol. 1 (2021) 24—34. https://doi.org/10.32434/0321-4095-2021-134-1-24-34.

Q. Chen, S. Sun, Y. Liu, C. Qi, H. Zhou, Q. Zhang, Int. J. Miner. Metall. 28 (2021) 1440—1452. https://doi.org/10.1007/s12613-021-2274-6.

L. Feng, K. Jin, H. Wang, Coatings 11(7) (2021) 1—12. https://doi.org/10.3390/coatings11070802.

L. Yang, Y. Zhang, Y. Yan, J. Clean. Prod. 127 (2016) 204—213. https://doi.org/10.1016/j.jclepro.2016.04.054.

H. Wang, X. You, J. Tian, X. Cheng, J. Wang, IOP Conf. Ser.: Earth Environ. Sci. 668 (2021) 1—7. https://doi.org/10.1088/1755-1315/668/1/012076.

J. Rosales, M. Gazquez, M. Cabrera, J.P. Bolivar, F. Agrela, in Waste and Bypoducts in Cement-Based Materials- Innovative Sustainable Materials for a Circular Economy, J. de Brito, C. Thomas, C. Medina, F. Agrela Ed., Woodhead Publishing, (2021) 153—189. ISBN: 9780128208953.

W. Cao, W. Yi, J. Li, J. Peng, S. Yin, Const. Build. Mater. 309 (2021) 125190. https://doi.org/10.1016/j.conbuildmat.2021.125190.

C.R. Canovas, R. Perez-Lopez, F. Macias, S. Chapron, J.M. Nieto, S. Pellet-Rostaing, J. Clean. Prod. 143 (2017) 497—505. https://doi.org/10.1016/j.jclepro.2016.12.083.

F. Wu, S. Liu, G. Qu, B. Chen, C. Zhao, L. Liu, J. Li, Y. Ren, J. Adv. Chem. Eng. 9 (2022) 1—11. https://doi.org/10.1016/j.ceja.2021.100227.

K. Ren, N. Cui, S. Zhao, K. Zheng, X. Ji, L. Feng, X. Cheng, N. Xie, Crystals 11(7) (2021) 1—20. https://doi.org/10.3390/cryst11070719.

Z. Wei, Z. Deng, J. Environ. Radioact. 242 (2022) 106778. https://doi.org/10.1016/j.jenvrad.2021.106778.

H. Tayibi, M. Choura, F.A. Lopez, F.J. Alguacil, A. Lopez-Delgado, J. Environ. Manage. 90(8) (2009) 2377—2386. https://doi.org/10.1016/j.jenvman.2009.03.007.

S. Wu, Y. Wang, M. Iqbal, K. Mehmood, Y. Li, Z. Tang, H. Zhang, Environ. Pollut. 304 (2022) 119241. https://doi.org/10.1016/j.envpol.2022.119241.

P. Singh, A. Saxena, J. Geol. Soc. India 98 (2022) 133—138. https://doi.org/10.1007/s12594-022-1939-8.

Y. Chernysh, O. Yakhnenko, V. Chubur, H. Roubik, Appl. Sci. 11 (4) (2021) 1—20. https://doi.org/10.3390/app11041575.

P.M. Rutherford, M.J. Dudas, J.M. Arocena, Environ. Technol. 16(4) (1995) 343—354. https://doi.org/10.1080/09593331608616276.

A. Jeyaseelan, A.A. Ghfar, M. Naushad, N. Viswanathan, J. Environ. Chem. Eng. 9(1) (2021) 1—12. https://doi.org/10.1016/j.jece.2021.105384.

L. Lahlmunsiama, N. Ngainunsiami, D. Kim, D. Tiwari, Chem. Eng. Process. 165 (2021) 1—14. https://doi.org/10.1016/j.cep.2021.108428.

S. Ghosh, A. Malloum, C.A. Igwegbe, J.O. Ighalo, S. Ahmadi, M.H. Dehghani, A. Othmani, Ö. Gökkuş, N.M. Mubarak, J. Mol. Liq. 346 (2022) 118257. https://doi.org/10.1016/j.molliq.2021.118257.

C.F.Z. Lacson, M. Lu, Y. Huang, J. Clean. Prod. 280(1) (2021) 1—20. https://doi.org/10.1016/j.jclepro.2020.124236.

K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang, T. Xiao, Sci. Total Environ. 773 (2021) 1—20. https://doi.org/10.1016/j.scitotenv.2021.145535.

R. Moalla, M. Gargouri, F. Khmiri, L. Kamoun, M. Zairi, Environ. Eng. Res. 23(1) (2018) 36—45. https://doi.org/10.4491/eer.2017.055.

X. Chen, J. Gao, Y., Zhao, Constr. Build. Mater. 229 (2019) 1—9. https://doi.org/10.1016/j.conbuildmat.2019.116864.

M. Du, J. Wang, F. Dong, Z. Wang, F. Yang, H. Tan, K. Fu, W. Wang, Research Square, preprint 1(1) (2021) 1—19. https://doi.org/10.21203/rs.3.rs-888156/v1.

J.S.A. Neto, J.D. Bersch, T.S.M. Silva, E.D. Rodriguez, S. Suziki, A.P. Kirchheim, Constr. Build. Mater. 299 (2021) 1—11. https://doi.org/10.1016/j.conbuildmat.2021.123935.

B. Guan, L. Yang, H. Fu, B. Kong, T. Li, L. Yang. Chem. Eng. J. 174 (1) (2011) 296—303. https://doi.org/10.1016/j.cej.2011.09.033.

Q. Guan, Y. Sui, F. Zhang, W. Yu, Y. Bo, P. Wang, W. Peng, J. Jin, Physicochem. Probl. Miner. Process. 57(1) (2021) 168—181. https://doi.org/10.37190/ppmp/130795.

S.J.S. Chelladuri, K. Murugan, A.P. Ray, M. Upadhyaya, V. Narasimharaj, S. Gnanasekaran, Mater. Today: Proc. 37(2) (2021) 1301—1304. https://doi.org/10.1016/j.matpr.2020.06.466.

N. Manmai, Y. Unpaprom, R. Ramaraj. Biomass Convers. Biorefin. 11 (2021) 1759—1773. https://doi.org/10.1007/s13399-020-00602-7.

M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Appl. Surf. Sci. 258(10) (2012) 4402—4410. https://doi.org/10.1016/j.apsusc.2011.12.125.

S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandao, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Anal. Chim. Acta 597(2) (2007) 179—186. https://doi.org/10.1016/j.aca.2007.07.011.

E.K. Tetteh, S. Rathilal, Bioengineering 9(3) (2022) 95. https://doi.org/10.3390/bioengineering9030095.

N.P. Sibiya, G. Amo-Duodu, E.K. Tetteh, S. Rathilal, Sci. Afr. 17 (2022) e01282. https://doi.org/10.1016/j.sciaf.2022.e01282.

W. Salah El-Din Mohamed, M.T.M.H. Hamad, M.Z. Kamel, Water Environ. Res. 92(7) (2020) 1080—1088. https://doi.org/10.1002/wer.1305.

A. Masmoudi-Soussi, I. Hammas-Nasri, K. Horchani-Naifer, M. Ferid, Int. J. Miner. Process. 123 (2013) 87—93. https://doi.org/10.1016/j.hydromet.2020.105253.

Z. Li, G.P. Demopoulos, J. Chem. Eng. Data 50(6) (2005) 1971—1982. https://doi.org/10.1021/je050217e.

Z. Li, G.P. Demopoulos, J. Chem. Eng. Data 51(2) (2006) 569—576. https://doi.org/10.1021/je0504055.

L. Fornsten, Biomaterials 19(6) (1998) 503—508. https://doi.org/10.1002/tqem.21929.