Prediction of doxycycline removal by photo-fenton process using an artificial neural network - multilayer perceptron model Original scientific paper

Main Article Content

Nabila Boucherit
https://orcid.org/0000-0002-0984-3616
Salah Hanini
Abdellah Ibrir
https://orcid.org/0000-0003-0332-1398
Maamar Laidi
https://orcid.org/0000-0002-8977-9895
Mohamed Roubehie Fissa

Abstract

This paper presents a study on the effectiveness of the Photo-Fenton Process (PF) for removing the doxycycline hyclate (DXC) antibiotic. The experiment showed that the best removal efficiency was achieved (79%) at pH 3 for 2.5 mg/L of DXC, 76.53 mg/L of H2O2, and 86.8 mg/L of Fe2+. The degradation mechanism of DXC by hydroxyl radicals was confirmed by FTIR and HPLC.  To model the oxidation reaction of DXC by PF, an multilayer perceptron (MLP) based optimized artificial neural network (OANN) was used, taking into account experimental data such as pH and initial concentrations of DXC, H2O2, and Fe2+. The OANNN predicted removal efficiency results were in close agreement with experimental results, with an RMSE of 0.0661 and an R2 value of 0.99998. The sensitivity analysis revealed that all studied inputs significantly impacted the transformation of DXC.

Article Details

How to Cite
Boucherit, N. ., Hanini, S. ., Ibrir, A. ., Laidi, M. ., & Roubehie Fissa, M. . (2024). Prediction of doxycycline removal by photo-fenton process using an artificial neural network - multilayer perceptron model: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ230824009B
Section
Articles

References

A. A. Borghi, M. F. Silva, S. Al Arni, A. Converti, and M. S. A. Palma, J. Chem. 2015 (2015) 1-9. https://doi.org/10.1155/2015/492030

D. Xu Y. Gao, Z. Lin, W. Gao, H. Zhang, K. Karnowo, X. Hu, H. Sun, S. Shatir, S. Hassan, S. Zhang, Front. Chem. 7 (2020) 1-18. https://doi.org/10.3389/fchem.2019.00943

J. Scaria, K. V. Anupama, and P. V. Nidheesh, , Sci. Total Environ. 771 (2021) 145291. https://doi.org/10.1016/j.scitotenv.2021.

R. Daghrir and P. Drogui, Environ. Chem. Lett. 11 (2013) 151-156. https://doi.org/10.1007/s10311-012-0390-2

T. Han , Y. Liang, Z. Wu, L. Zhang, Z. Liu, Q. Li, X. Chen, W. Guo, L. Jiang, F. Pan, S. Ge, Z. Mi, Z. Liu, H. Huang, X. Li, J. Zhou, Y. Li, J. Wang, Z. Zhang, Y. Tang, M. Wu, J. Hazard. Mater. 380 (2019) 120885. https://doi.org/10.1016/j.jhazmat.2019.120885

J. Bolobajev, M. Trapido, and A. Goi, Chemosphere 153 (2016) 20-23. http://doi.org/10.1016/j.chemosphere.2016.03.042

M. hui Zhang, H. Dong, L. Zhao, D. xi Wang, and D. Meng, Sci. Total Environ. 670 (2019) 11-21. https://doi.org/10.1016/j.scitotenv.2019.03.180

P. V. Nidheesh, R. Gandhimathi, and S. T. Ramesh, Environ. Sci. Pollut. Res. 20 (2013) 2099–2132. https://doi.org/10.1007/s11356-012-1385-z

S. M. Aramyan, , Int. J. Environ. Sci. Nat. Resour. 2 (2017) 1-18. ISSN: 2572-1119

Y. Mesellem, A. A. El Hadj, M. Laidi, S. Hanini, and M. Hentabli, , Neural Comput. Appl 2 (2021). https://doi.org/10.1007/s00521-021-05890-2

A. Adda, S. Hanini, S. Bezari, M. Laidi, and M. Abbas, Environ. Eng. Res. 27 (2021). https://doi.org/10.4491/eer.2020.383

P. Kundu, A. Debsarkar, S. Mukherjee, and S. Kumar, , Environ. Technol. (United Kingdom). 35 (2014) 1296-1306. https://doi.org/10.1080/09593330.2013.866698

A. Giwa , A. Yusuf, H.A. Balogun, N.S. Sambudi, M.R. Bilad, I. Adeyemi, S. Chakraborty, S. Curcio, Process Saf. Environ. Prot. 146 (2021) 220-256. https://doi.org/10.1016/j.psep.2020.08.015

O. B. Ayodele, H. S. Auta, and N. Md Nor, Ind. Eng. Chem. Res. 51 (2012) 1611-1619. https://doi.org/10.1021/ie302390b

S. Talwar, A. K. Verma, and V. K. Sangal, J. Environ. Manage., 250, no. July, (2019), doi: 10.1016/j.jenvman.2019.109428.

S. Sethi, A. Dhir, and V. Arora, React. Kinet. Mech. Catal., 136, no. 1, (2023) 549–565, doi: 10.1007/s11144-023-02360-9

N. Boucherit, M. Abouseoud, and L. Adour, Nov. Biotechnol. Chim. 17 (2018) 160-171. https://doi.org/10.2478/nbec-2018-0017

A. Babuponnusami and K. Muthukumar, J. Environ. Chem. Eng. 2 (2014) 220-226. http://doi.org/10.1016/j.jece.2013.10.011

L.G. Devi, K.E. Rajashekhar, K.S. Anantha Raju, S.G. Kumar, Desalination 270 (2011) 31-39. http:// doi.org/10.1016/j.desal.2010.11.017 [20] J. Jeong, W. Song, W. J. Cooper, J. Jung, and J. Greaves, Chemosphere 78 (2010) 535-540. http://doi.org/10.1016/j.chemosphere.2009.11.024

R. Pulicharla S.K. Brar, T. Rouissi, S. Auger, P. Drogui, M. Verma, R.Y. Surampalli, Ultrason. Sonochem. 34 (2017) 332-342. http://doi.org/10.1016/j.ultsonch.2016.05.042

E. S. Elmolla, M. Chaudhuri, and M. M. Eltoukhy, , J. Hazard. Mater. 179 (2010) 127-134. http://doi.org/10.1016/j.jhazmat.2010.02.068

M. Laidi and S. Hanini, Int. J. Refrig. 36 (2013) 247-257. http://doi.org/10.1016/j.ijrefrig.2012.09.016