INFRARED DRYING OF CARROT SLICES: EFFECT OF POWER LEVELS ON KINETICS AND ENERGY EFFICIENCY
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ250628028SKeywords:
Infrared drying, mathematical modelling, drying kinetics, diffusion coefficient, activation energyAbstract
The aim of this study is to optimize the drying conditions for yellow carrots by investigating the effects of varying infrared (IR) power levels on drying kinetics. Following drying tests at IR power levels of 38, 50, 62, 74, and 88 W, the initial moisture content of carrot slices (6.95 kg water/kg dry matter) was decreased to 0.11 kg water/kg dry matter. Drying times ranged from 300 minutes at 38 W to 110 minutes at 88 W, demonstrating an inverse relationship between IR power and drying duration. Higher IR power levels accelerated the drying rate by enhancing energy transfer, which promoted moisture removal efficiency. Effective diffusion coefficients, calculated as ranging from 7.73×10-10 to 2.21×10-9 m²/s for the power levels of 38 W to 88 W, indicate an increase in moisture migration with higher power. The process's energy requirements were reflected in the activation energy for moisture diffusion (1.967 kW/kg). The Midilli and Kucuk model offered the best fit for characterizing the drying behaviour, and statistical analysis validated the model's correctness. These findings provide valuable insights for optimizing IR drying conditions to enhance the efficiency and quality of yellow carrot drying processes.
References
[1] A. Ignaczak, A. Salamon, J. Kowalska, A. Marzec, H. Kowalska, Molecules 28 (2023) 6407. https://doi.org/10.3390/molecules28176407.
[2] H. Toğrul, J. Food Eng. 77 (2006) 610-619. https://doi.org/10.1016/j.jfoodeng.2005.07.020.
[3] P. Sakare, N. Prasad, N. Thombare, R. Singh, S.C. Sharma, Food Eng. Rev. 12 (2020) 381-398. https://doi.org/10.1007/s12393-020-09237-w.
[4] N.K. Rastogi, Crit. Rev. Food Sci. Nutr. 52 (2012) 737-760. https://doi.org/10.1080/10408398.2010.508138.
[5] J.K. Yan, L.X. Wu, Z.R. Qiao, W.D. Cai, H. Ma, Food Chem. 271 (2019) 588-596. https://doi.org/10.1016/j.foodchem.2018.08.012.
[6] M. Younis, D. Abdelkarim, A. Zein El-Abdein, Saudi J. Biol. Sci. 25 (2018) 332-338. https://doi.org/10.1016/j.sjbs.2017.06.011.
[7] O.Y. Turan, F.E. Firatligil, Czech J. Food Sci. 37 (2019) 128-134. https://doi.org/10.17221/243/2017-CJFS.
[8] A. Solyom, J. Betz, P. Brown, A. Bzhelyansky, N. Chrisafis, M. Embuscado, H. Figore, H. Johnson, G. Joseph, D. Kennedy, A. Kuszak, E. Mudge, M. Phillips, T. Phillips, L. Richards, C. Rimmer, B. Sauza, B. Schaneberg, J. Skamarack, S. Coates, J. AOAC Int. 99 (2016) 1102-1104. https://doi.org/10.5740/jaoacint.SMPR2016.003.
[9] J. Akter, J. Hassan, M. M. Rahman, M. S. Biswas, H I. Khan, M.M.R. Rajib, M.R. Ahmed, M. N.-E.-A. Khan, M. F.A. Hasan, Heliyon 10 (2024) e24165. https://doi.org/10.1016/j.heliyon.2024.e24165.
[10] T. Gulati, A.K. Datta, J. Food Eng. 166 (2015) 119–138. https://doi.org/10.1016/j.jfoodeng.2015.05.031.
[11] P.C. Panchariya, Đ. Popović, A. Sharma, J. Food Eng. 52 (2002) 340-358. https://doi.org/10.1016/S0260-8774(01)00126-1.
[12] A. Manzoor, M.A. Khan, M.A. Mujeebu, R.A. Shiekh, J. Agric. Food Res. 5 (2021) 100176. https://doi.org/10.1016/j.jafr.2021.100176.
[13] D.C. Lopes, A.J. Steidle Neto, J.K. Santiago, Biosyst. Eng. 118 (2014) 105-114. https://doi.org/10.1016/j.biosystemseng.2013.11.011.
[14] A. Midilli, H. Kucuk, Energy Convers. Manage. 44 (2003) 1111–1122. https://doi.org/10.1016/S0196-8904(02)00099-7.
[15] A. Omolola, A. Jideani, P. Kapila, Interciencia 40 (2015) 374–380. https://www.researchgate.net/publication/282237695_Drying_kinetics_of_banana_Musa_spp.
[16] M. Aghbashlo, M. Kianmehr, S. Khani, M. Ghasemi, Int. Agrophys. 23 (2009) 313-317. http://www.international-agrophysics.org/Mathematical-modelling-of-thin-layer-drying-of-carrot,106450,0,2.html#ungrouped
[17] M.M.M. Najla, R. Bawatharani, Iconic Res. Eng. J. 2 (2019) 6-10. https://www.irejournals.com/paper-details/1701096.
[18] S. Shah, M. Joshi, Int. J. Electron. Eng. 2 (2010) 159-163. https://www.semanticscholar.org/paper/Modeling-Microwave-Drying-Kinetics-of-Sugarcane-Shah-Joshi/e0b913d263f9f955b27e4eac3aa323be2e676089.
[19] S. Jena, H. Das, J. Food Eng. 79 (2007) 92-99. https://doi.org/10.1016/j.jfoodeng.2006.01.032.
[20] R. Lemus-Mondaca, N. Betoret, A. Vega-Gálvez, E. Lara-Aravena, J. Food Process Eng. 32 (2009) 645-663. https://doi.org/10.1111/j.1745-4530.2007.00236.x.
[21] R. Guiné, Electron. J. Environ. Agric. Food Chem. 9 (2010) 1772-1783. https://www.researchgate.net/publication/256444660_Analysis_of_the_drying_kinetics_of_S_Bartolomeu_pears_for_different_drying_systems.
[22] B. Alaei, R. Chayjan, J. Food Process. Preserv. 39 (2014) 1-12. https://doi.org/10.1111/jfpp.12252.
[23] T.J. Afolabi, T.Y. Tunde-Akintunde, J.A. Adeyanju, J. Food Sci. Technol. 52 (2015) 2731-2740. https://doi.org/10.1007/s13197-014-1365-z.
[24] L. Hassini, S. Azzouz, R. Peczalski, A. Belghith, J. Food Eng. 79 (2007) 47-56. https://doi.org/10.1016/j.jfoodeng.2006.01.025.
[25] J. Crank, The Mathematics of Diffusion, 2nd ed., Oxford University Press, London (1975), p. 69-88. https://dokumen.pub/the-mathematics-of-diffusion-second-edition-0198533446-9780198533443.html.
[26] N.P. Zogzas, Z.B. Maroulis, Dry. Technol. 14 (1996) 1543-1573. https://doi.org/10.1080/07373939608917163.
[27] L. Ceclu, E. Botez, O. Nistor, F. Gögüs, D. Andronoiu, G. Mocanu, Ann. Univ. Dunarea Jos Galati 39 (2015) 20-29. https://www.researchgate.net/publication/298842746_Influence_of_drying_conditions_on_the_effective_diffusivity_and_activation_energy_during_convective_air_and_vacuum_drying_of_pumpkin.
[28] İ. Doymaz, Sigma J. Eng. Nat. Sci. 37 (2019) 71-84. https://dergipark.org.tr/en/pub/sigma/issue/65450/1011078#article_cite.
[29] J. Yi, X. Li, J. He, X. Duan, Dry. Technol. 38 (2019) 1-16. https://doi.org/10.1080/07373937.2019.1628772.
[30] D. Huang, P. Yang, X. Tang, L. Luo, B. Sunden, Trends Food Sci. Technol. 110 (2021) 765-777. https://doi.org/10.1016/j.tifs.2021.02.039.
[31] M. Zarein, S.H. Samadi, B. Ghobadian, J. Saudi Soc. Agric. Sci. 14 (2015) 41-47. https://doi.org/10.1016/j.jssas.2013.06.002.
[32] F. Botelho, P. Correa, A. Goneli, M. Martins, F. Magalhães, S. Campos Botelho, Rev. Bras. Eng. Agric. Ambient. 15 (2011) 845-852. https://doi.org/10.1590/S1415-43662011000800012.
[33] H. Elmesiry, K. Ashiagbor, Z. Hu, W.G. Alshaer, Case Stud. Therm. Eng. 52 (2023) 103676. https://doi.org/10.1016/j.csite.2023.103676.
[34] A.M. Matouk, M.M. El-Kholy, A. Tharwat, W.M. Abdelrahman, J. Soil Sci. Agric. Eng. 5 (2014) 569-581. https://doi.org/10.21608/jssae.2014.49310.
[35] B. Turkan, A.B. Etemoglu, Sigma J. Eng. Nat. Sci. 38 (2020) 527-544. https://dergipark.org.tr/en/pub/sigma/issue/65153/1002263.
[36] S. Álvarez, C. Álvarez, R. Hamill, A.M. Mullen, E. O'Neill, Compr. Rev. Food Sci. Food Saf. 20 (2021) 5370-5392. https://doi.org/10.1111/1541-4337.12845.
[37] R. Shrestha, A. Dhungel, S. Dhakal, Tribhuvan Univ. J. Food Sci. Technol. 2 (2023) 17-25. https://doi.org/10.3126/tujfst.v2i2.66508.
[38] M.Y. Barforoosh, A.M. Borghaee, S. Rafiee, S. Minaei, B. Beheshti, Int. J. Low-Carbon Technol. 19 (2024) 192-206. https://doi.org/10.1093/ijlct/ctad121.
[39] H.S. El-Mesery, M. Qenawy, Z. Hu, W.G. Alshaer, Case Stud. Therm. Eng. 50 (2023) 103451. https://doi.org/10.1016/j.csite.2023.103451.
[40] F. Yang, H. Schmidt, E. Hüger, ACS Omega 8 (2023) 27776-27783. https://doi.org/10.1021/acsomega.3c04029.
[41] İ. Doymaz, J. Food Process. Preserv. 39 (2015) 2738-2745. https://doi.org/10.1111/jfpp.12524.
[42] İ. Doymaz, J. Agric. Sci. 19 (2013) 1-11. https://doi.org/10.1501/Tarimbil 0000001227.
İ. Doymaz, Sigma J. Eng. Nat. Sci. 37 (2019) 161-171.https://dergipark.org.tr/en/pub/sigma/issue/65450/1011078.
[43] S. Tanta, İ. Doymaz, Sigma J. Eng. Nat. Sci. 37 (2019) 93-104. https://dergipark.org.tr/en/pub/sigma/issue/65450/1011084.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mehmet Soydan, İbrahim Doyma

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.



