TARAXACUM OFFICINALE EXTRACT AS A GREEN ALTERNATIVE FOR CORROSION CONTROL OF STEEL IN ACIDIC ENVIRONMENT

Original scientific paper

Authors

  • Milorad Tomić University of East Sarajevo, Faculty of Technology Zvornik, Zvornik, Republic of Srpska, Bosnia and Herzegovina and Engineering Academy of Serbia, Belgrade, Serbia https://orcid.org/0009-0004-1022-2093
  • Marija Mitrović University of East Sarajevo, Faculty of Technology Zvornik, Zvornik, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0000-0002-3208-016X
  • Regina Fuchs-Godec University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia https://orcid.org/0000-0002-5700-0963
  • Nebojša Vasiljević University of East Sarajevo, Faculty of Technology Zvornik, Zvornik, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0000-0002-3789-9975
  • Dragan Tošković University of East Sarajevo, Faculty of Technology Zvornik, Zvornik, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0009-0001-7145-8567
  • Miomir Pavlović University of East Sarajevo, Faculty of Technology Zvornik, Zvornik, Republic of Srpska, Bosnia and Herzegovina

DOI:

https://doi.org/10.2298/CICEQ250322029T

Keywords:

corrosion, green inhibitors, environmentally friendly, dandelion root extract, electrochemistry

Abstract

This study investigates the potential of Taraxacum officinale (TO) root extract as an environmentally friendly corrosion inhibitor for two types of steel, TH-550 and TS-275, in an acidic environment. The corrosion inhibition was assessed by monitoring the weight loss of steel samples over a 72-hour immersion period in four different solutions: blank 4% HCl solution and 4% HCl solutions containing 0.5, 1.0, and 1.5 g/L of TO root extract. The inhibitor efficiency, calculated from weight loss data, ranged from 70% to 89%. Surface analysis of the steel samples, conducted after 24 hours of immersion, revealed the formation of a uniform protective film on the steel exposed to the inhibited solutions, while samples in the blank acidic solution showed significant corrosion. Fourier-transform infrared spectroscopy analysis identified key metal-complexing functional groups in the TO root extract, including aromatic C—H, C—O, C=O, and O—H, which are likely responsible for the interaction with the steel surface. Potentiodynamic polarization measurements indicated that the TO root extract acts as an anodic corrosion inhibitor, with the ability to cover up to 88% of the steel surface. Electrochemical impedance spectroscopy, in combination with polarization and weight loss results, demonstrated that the inhibitor efficiency of the TO root extract increases with concentration.

References

[1] A. Dehghani, P. Ghahremani, A.H. Mostafatabar, B. Ramezanzadeh, Biomass. Convers. Biorefin. 14 (2024) 7467-7486. https://doi.org/10.1007/s13399-022-02893-4.

[2] 2. N.O. Eddy, U.J. Ibok, R. Garg, R. Garg, A. Iqbal, M. Amin, F. Mustafa, M. Egilmez, A.M. Galal, Molecules 27 (2022) 1-18. https://doi.org/10.3390/molecules27092991.

[3] 3. J. Kaur, N. Daksh, A. Saxena, Arab. J. Sci. Eng. 47 (2022) 57-74. https://doi.org/10.1007/s13369-021-05699-0

[4] 4. A. Salcı, H. Yüksel, R. Solmaz, J. Taiwan Inst. Chem. Eng. 134 (2022) 1-9. https://doi.org/10.1016/j.jtice.2022.104349.

[5] 5. Y. Wu, L. Zeng, Y. Zheng, F. You, X. Liu, Appl. Surf. Sci 687 (2025) 162245. https://doi.org/10.1016/j.apsusc.2024.162245.

[6] 6. B.U. Ugi, M.E. Obeten, T.O. Magu, Int. J. Chem. Sci. 2 (2018) 35-43. https://www.researchgate.net/profile/Obeten-Mbang/publication/330982497_Phytochemical_constituents_of_Taraxacum_officinale_leaves_as_eco-friendly_and_nontoxic_organic_inhibitors_for_stainless_steel_corrosion_in_02_M_HCl_acid_medium/links/5c5e7a4c92851c48a9c4936d/Phytochemical-constituents-of-Taraxacum-officinale-leaves-as-eco-friendly-and-nontoxic-organic-inhibitors-for-stainless-steel-corrosion-in-02-M-HCl-acid-medium.pdf

[7] 7. H. Parangusan, M.H. Sliem, A.M. Abdullah, M. Elhaddad, N. Al-Thani, J. Bhadra, Int. J. Electrochem. Sci. 20 (2025) 100919. https://doi.org/10.1016/j.ijoes.2024.100919

[8] 8. A. Oulabbas, S. Abderrahmane, A. Salcı, İ.H. Geçibesler, R. Solmaz, ChemistrySelect 7 (2022) 1-12. https://doi.org/10.1002/slct.202200212

[9] 9. N. Bhardwaj, P. Sharma, V. Kumar, Corros. Rev. 39 (2021) 27-41. https://doi.org/10.1515/corrrev-2020-0046.

[10] 10. G.K. Barboza, M.C. de Oliveira, M.A. Neves, A. Echevarria, Green Chem. Lett. Rev. 17 (2024) 1-17. https://doi.org/10.1080/17518253.2024.2320254.

[11] 11. O. Kenny, T. Smyth, D. Walsh, C. Kelleher, C. Hewage, N.P. Brunton, Food Chem. 161 (2014) 79-86. https://doi.org/10.1016/j.foodchem.2014.03.126.

[12] 12. A. Ostovari, S. Hoseinieh, M. Peikari, S. Shadizadeh, S. Hashemi, Corr. Sci. 51 (2009) 1935-1949. https://doi.org/10.1016/j.corsci.2009.05.024.

[13] 13. T. Durak, J. Depciuch, Environ. Exp. Bot. 169 (2020) 1-13. https://doi.org/10.1016/j.envexpbot.2019.103915.

[14] 14. C. Verma, A. Singh, P. Singh, K.Y. Rhee, A. Alfantazi, Coord. Chem. Rev. 515 (2024) 1-25. https://doi.org/10.1016/j.ccr.2024.215966.

[15] 15. C. Verma, D.K. Verma, E.E. Ebenso, M.A. Quraishi, Heteroat. Chem., 29 (2018) 1-20. https://doi.org/10.1002/hc.21437.

[16] 16. A. Carmona-Hernandez, M.C. Barreda-Serrano, H.A. Saldarriaga Noreña, R. López-Sesenes, J.G. González-Rodríguez, E. Mejía Sánchez, J.A. Ramírez-Cano, R. Orozco-Cruz, R. Galván-Martínez, Molecules, 29 (2024) 1-22. https://doi.org/10.3390/molecules2922524.

[17] 17. M. Dent, R. Fuchs-Godec, FTB 59 (2021) 413-421. https://doi.org/10.17113/ftb.59.04.21.7026

[18] 18. M. Deyab, E. Guibal, Sci. Rep. 10 (2020) 4812. https://doi.org/10.1038/s41598-020-61810-9.

[19] 19. K. Žbulj, L. Hrnčević, G. Bilić, K. Simon, Energies 15 (2022) 1-14. https://doi.org/10.3390/en15093074.

[20] 20. M. Mitrović, S. Apostolov, R. Fuchs-Godec, B. Salkunić, G. Vastag, M. Тоmić, PERIOD. POLYTECH-CHEM. 68 (2024) 609-619. https://doi.org/10.3311/PPch.37211.

[21] 21. S. Vranjes, D. Zoric, STES proceedings (2018), 19. https://doi.org/10.7251/SSN1811015V.

[22] 22. R. Fuchs-Godec, Coatings 11 (2021) 971. https://doi.org/10.3390/coatings11080971.

[23] 23. D. Jedrejek, B. Lis, A. Rolnik, A. Stochmal, B. Olas, Food Chem. Toxicol. 126 (2019) 233–247. https://doi.org/10.1016/j.fct.2019.02.017.

[24] 24. K. Nuridullaeva, E. Karieva, R. Khalilov, Pharm. Chem. J. 57 (2023) 1298-1303. https://doi.org/10.1007/s11094-024-03038-9.

[25] 25. A. Zomorodian, R. Bagonyi, A. Al-Tabbaa, J. Build. Eng. 38 (2021) 1-9. https://doi.org/10.1016/j.jobe.2021.102171.

Published

17.12.2025

Issue

Section

Article

How to Cite

TARAXACUM OFFICINALE EXTRACT AS A GREEN ALTERNATIVE FOR CORROSION CONTROL OF STEEL IN ACIDIC ENVIRONMENT: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250322029T

Similar Articles

1-10 of 34

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)