COMBUSTION, PERFORMANCE, AND EMISSION CHARACTERISTICS OF A CI ENGINE USING Borassus flabellifer BIODIESEL BLENDS

Original scientific paper

Authors

  • Sakthi Rajan Chandramurthy SBM College of Engineering & Technology, Dindigul, Tamil Nadu, India
  • Silambarasan Ragunathan Annamalai Polytechnic College, Chettinad, Tamil Nadu, India
  • Ramesh Kumar Ayyakkannu Sona College of Technology, Salem, Tamil Nadu, India
  • Anbarasan Baluchamy PSNA College of Engineering & Technology, Dindigul, Tamil Nadu, India

DOI:

https://doi.org/10.2298/CICEQ250226019C

Keywords:

Biodiesel, Borassus flabellifer, Combustion, Performance and emission characteristics

Abstract

Borassus flabellifer methyl esters (BFMEs) have a few attractive characteristics that make them a potential rival to diesel and other alternative fuels. This study presents the first comprehensive analysis of its performance, combustion, and emission characteristics in a diesel engine. In addition to a high calorific value, a high cetane number, and the availability of oxygen, constituting 10% of its total weight, it is also readily available. Experimental testing of BFMEs was conducted on a single-cylinder compression ignition (CI) engine in this stage. BFMEs were blended with diesel at various concentrations (20%, 40%, 60%, 80% and 100%). Blends of BFMEs were experimentally examined for their combustion properties, emissions, and performance. The CI engine was set to steady-state operation so that it would reach the optimum temperature for the conditions in which it was operating. Initially, it was found that neat BFMEs had the lowest thermal efficiency, while BFME20, BFME40, BFME60, and BFME80 all had a higher brake thermal efficiency (BTE) than BFME100 at rated load conditions (by 5.1%, 2.8%, 2.0%, and 1.4%, respectively). Compared to other blends, BFME20 and BFME40 have better fuel efficiency. Fuel efficiency was improved by a reason-able amount, and BFME20's consumption was reduced by 5.1% compared to BFME100. Compared to diesel, hydrocarbons, CO, and smoke emissions from BFME20 were reduced by 9.9%, 5.8%, and 3.71%, respectively. These results underscore the potential of low-ratio BFME blends as cleaner and more efficient biodiesel alternatives, highlighting BFME’s practical applicability in existing diesel engines without major modifications.

References

[1] S. Ellappan, S. Rajendaran, Energy Sources, Part A 46 (2024) 4810-4824. https://doi.org/10.1080/15567036.2019.1704315.

[2] K. Selvaraj, M. Thangavel, Energy Sources, Part A 43 (2021) 145-159. https://doi.org/10.1080/15567036.2019.1623950.

[3] C. Sakthi Rajan, K. Muralidharan, J. Therm. Anal. Calorim. 147 (2022) 8901-8917. https://doi.org/10.1007/s10973-021-11127-0.

[4] A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Fuel 84 (2005) 335-340. https://doi.org/10.1016/j.fuel.2004.09.016.

[5] D. Agarwal, L. Kumar, A.K. Agarwal, Renewable Energy 33 (2008) 1147-1156. https://doi.org/10.1016/j.renene.2007.06.017.

[6] P.K. Devan, N.V. Mahalakshmi, Fuel 88 (2009) 861-867. https://doi.org/10.1016/j.fuel.2008.11.005.

[7] K. Muralidharan, D. Vasudevan, K.N. Sheeba, Energy 36 (2011) 5385-5393. https://doi.org/10.1016/j.energy.2011.06.050.

[8] A.K. Agarwal, A. Dhar, Renewable Energy 52 (2013) 283-291. https://doi.org/10.1016/j.renene.2012.10.015.

[9] R. Mohsin, Z.A. Majid, A.H. Shihnan, N.S. Nasri, Z. Sharer, Energy Convers. Manage. 88 (2014) 821-828. https://doi.org/10.1016/j.enconman.2014.09.027.

[10] B.N. Agrawal, S. Sinha, A.V. Kuzmin, V.A. Pinchuk, Therm. Sci. Eng. Prog. 14 (2019) 100404. https://doi.org/10.1016/j.tsep.2019.100404.

[11] N.H. Papu, P. Lingfa, S.K. Dash, Energy Sources, Part A 46 (2024) 12620-12632. https://doi.org/10.1080/15567036.2020.1798566.

[12] A.V.S.L. Sai Bharadwaj, N. Subramaniapillai, M.S.B. Khadhar Mohamed, A. Narayanan, Fuel 296 (2021) 120708. https://doi.org/10.1016/j.fuel.2021.120708.

[13] S. Yadav, A. Kumar, A. Chaudhary, Sci. J. Sil. Univ. Technol., Ser. Transp. 115 (2022) 249-264. https://doi.org/10.20858/sjsutst.2022.115.17.

[14] R. Rohith Renish, G. Maneesha, P. Jeyaraman, T. Niruban Projoth, Mater. Today: Proc. 62 (2022) 3689-3698. https://doi.org/10.1016/j.matpr.2022.04.427.

[15] C. Sakthi Rajan, A. Baluchamy, J. Venkatesh, S. Balamurugan, R. Karthick, Eng. Proc. 61 (2024) 7. https://doi.org/10.3390/engproc2024061007.

[16] A. Baluchamy, R. Karthick, C. Sakthi Rajan, T. Rajkumar, Multidiscip. Sci. J. 6 (2023) 2024071. https://doi.org/10.31893/multiscience.2024071.

[17] A. Kumar Paswan, S. Kesharvani, K. Gidwani Suneja, G. Dwivedi, Mater. Today: Proc. 78 (2023) 647-655. https://doi.org/10.1016/j.matpr.2022.12.069.

[18] M.M. Uyar, A.B. Demirpolat, H. Arslanoglu, Colloid Polym. Sci. 301 (2023) 557-567. http://doi.org/10.1007/s00396-023-05085-2.

[19] A.B. Demirpolat, M.M. Uyar, H. Arslanoglu, Pet. Chem. 62 (2022) 433-443. https://doi.org/10.1134/S0965544122020190.

[20] M.M. Uyar, A. Çıtlak, A.B. Demirpolat, Ind. Crops Prod. 222 (2024) 119712. https://doi.org/10.1016/j.indcrop.2024.119712.

[21] A. Baluchamy, C. Sakthi Rajan, S. Balamurugan, J. Venkatesh, 26 (2024) 1-10. https://doi.org/10.30955/gnj.005777.

[22] C. Sakthi Rajan, K. Muralidharan, B. Anbarasan, A. Ramesh Kumar, Energy Sources A: Recovery Util. Environ. Eff. 46 (2024) 7310–7322. https://doi.org/10.1080/15567036.2024.2355363.

[23] M. Chhabra, A. Sharma, G. Dwivedi, Egypt. J. Petrol. 26 (2017), 511–518. https://doi.org/10.1016/j.ejpe.2016.07.002.

[24] L.A. Raman, B. Deepanraj, S. Rajakumar, V. Sivasubramanian, Fuel. 246 (2019) 69–74. https://doi.org/10.1016/j.fuel.2019.02.106.

[25] M.A. Asokan, S. Senthur Prabu, P.K.K. Bade, V.M. Nekkanti, S.S.G. Gutta, Energy. 173 (2019) 883–892. https://doi.org/10.1016/j.energy.2019.02.075.

[26] M.E.S. Mirghani, N.A. Kabbashi, M.Z. Alam, I.Y. Qudsieh, M.F.R. Alkatib, J. Am. Oil Chem. Soc. 88 (2011) 1897–1904. https://doi.org/10.1007/s11746-011-1866-0.

[27] K.R. Bukkarapu, A. Krishnasamy, Energy Fuel. 35 (2021) 7993–8005. https://doi.org/10.1021/acs.energyfuels.0c03927.

[28] M. Tariq, S. Ali, F. Ahmad, M. Ahmad, M. Zafar, N. Khalid, M.A. Khan, Fuel Process. Technol. 92 (2011) 336–341. https://doi.org/10.1016/j.fuproc.2010.09.025.

[29] A.S. Mohammed, S.M. Atnaw, A.V. Ramaya, G. Alemayehu, J. Energy Inst. 108 (2023) 101227. https://doi.org/10.1016/j.joei.2023.101227.

[30] S. Vijayan, R. Sathyamurthy, E.M.A. Mokheimer, R.S. Kumar, Fuel Process. Technol. 248 (2023) 107842. https://doi.org/10.1016/j.fuproc.2023.107842.

[31] J. Wang, H. Sun, S. Devanesan, M.S. Alsahi, A. Anderson, F. Daniel, T.R. Praveenkumar, Fuel 352 (2023) 128946. https://doi.org/10.1016/j.fuel.2023.128946.

[32] P.K. Wong, S.H. Chen, M.A. Ghadikolaei, K.W. Ng, S.M. Yuen Lee, J.C. Xu, Z.D. Lian, M. Ren, Z. Ning, N.K. Gali, Environ. Pollut. (Oxford, U.K.) 333 (2023) 122099. https://doi.org/10.1016/j.envpol.2023.122099.

[33] P. Karin, A. Tripatara, P. Wai, B.-S. Oh, C. Charoenphonphanich, N. Chollacoop, H. Kosaka, Case Stud. Chem. Environ. Eng. 6 (2022) 100249. https://doi.org/10.1016/j.cscee.2022.100249.

[34] P. Anchupogu, R.L. Krupakaran, S. Venkateswarlu, S. Satish, S. Phaneendrareddy, S. Shohel, P. Umamaheswarrao, Mater. Today: Proc. 102 (2024) 236-240. https://doi.org/10.1016/j.matpr.2023.05.089.

[35] S. Kumar, R. Gautam, Sustain. Energy Technol. Assess. 57 (2023) 103305. https://doi.org/10.1016/j.seta.2023.103305.

Downloads

Published

— Updated on 17.07.2025

Issue

Section

Articles

How to Cite

COMBUSTION, PERFORMANCE, AND EMISSION CHARACTERISTICS OF A CI ENGINE USING Borassus flabellifer BIODIESEL BLENDS: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250226019C

Similar Articles

31-40 of 80

You may also start an advanced similarity search for this article.