GREEN GRAPE MARC BIOSORBENTS PREPARATION FOR MERCURY REMOVAL IN AQUEOUS MEDIA Scientific paper

Main Article Content

Roberta Del Sole
https://orcid.org/0000-0003-2542-7396
Alvaro Maggio
https://orcid.org/0000-0002-3196-9637
Lucia Mergola
https://orcid.org/0000-0002-5327-2216

Abstract

In this study, grape marc waste from Negroamaro (a South of Italy vine variety) winery production was used to prepare biosorbents for Hg(II) removal in aqueous media. A green approach was used to develop a proper biosorbent through two different grape marc washing procedures. In particular, the common chloridric acid and the greener citric acid were evaluated. The biosorbent prepared using citric acid as a washing agent (GM-CA) gave similar results to the biosorbent washed with HCl (GM-HCl) with a maximum adsorption capacity of 36.39 mg g-1. Isothermal studies revealed heterogeneous physical adsorption of Hg(II) on the biosorbents. Moreover, FTIR analysis of the grape marc-based biosorbent without and with Hg(II) confirmed ionic interactions in the biosorbent that fit with a pseudo-second-order kinetic model. Furthermore, no significant adsorption on the biosorbent was observed when two other heavy metals, copper(II) and nickel(II), previously studied for similar sorbents, were considered. Finally, the reusability of GM-CA biosorbent was also demonstrated over three cycles. Thus, the green preparation approach used in this work can be considered suitable for developing grape marc-based biosorbents.

Article Details

How to Cite
Del Sole, R. ., Maggio, A. ., & Mergola, L. . (2022). GREEN GRAPE MARC BIOSORBENTS PREPARATION FOR MERCURY REMOVAL IN AQUEOUS MEDIA: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(1), 1–10. https://doi.org/10.2298/CICEQ201014008S
Section
Articles

References

WHO, Inorganic mercury - environmental health criteria 118. World Health Organization, International Programme on Chemical Safety, Geneva, Switzerland, 1991. https://apps.who.int/iris/bitstream/handle/10665/40626/IPCS_EHC_118.pdf?sequence=1

J.G. Wiener, D.P. Krabbenhoft, G.H. Heinz, A.M. Scheuhammer, Ecotoxicology of mercury. In: Handbook of Ecotoxicology, Hoffman D. J., Rattner B. A., Burton G. A., Cairns J. (Eds), 2nd Ed., Lewis Publishers, Boca Raton (2003), pp 409—463. https://doi.org/10.1201/9781420032505.ch16

B. Fernandes Azevedo, L. Barros Furieri, F.M. Peçanha, G. A. Wiggers, P. Frizera Vassallo, M. Ronacher Simões, J. Fiorim, P. Rossi de Batista, M. Fioresi, L. Rossoni, L. Stefanon, M.J. Alonso, M. Salaices, D. Valentim Vassallo, J. Biomed. Biotechnol. 2012 (2012) 949048. https://doi.org/10.1155/2012/949048

D.M. Manohar, K.A. Krishnan, T.S. Anirudhan, Water Res. 36 (2002) 1609—1619. https://doi.org/10.1016/S0043-1354(01)00362-1

X. Lu, X. Huangfu, J. Ma, J. Hazard. Mater. 280 (2014) 71—78. https://doi.org/10.1016/j.jhazmat.2014.07.056

M.A. Didi, B. Medjahed, W. Benaoudam, Am. J. Anal. Chem. (2013) 40—47. https://doi.org/10.4236/ajac.2013.47A006

L. Mergola, S. Scorrano, E. Bloise, M.P. Di Bello, M. Catalano, G. Vasapollo, R. Del Sole, Polym. J. 48 (2016) 73—79. https://doi.org/10.1038/pj.2015.79

M.W. Franco, L.A. Mendes, C.C Windmöller., K.A.F Moura., L.A.G. Oliveira, F.A.R. Barbosa, Water Air Soil Pollut. 229 (2018) 127. https://doi.org/10.1007/s11270-018-3782-5

A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Chem. Eng. J., 270 (2015) 244—271. https://doi.org/10.1016/j.cej.2015.01.135

M. Erhayem, F. Al-Tohami, R. Mohamed, K. Ahmida, Am. J. Anal. Chem. 6 (2015) 1—10. https://doi.org/10.4236/ajac.2015.61001

F.E. Arias Arias, A. Beneduci, F. Chidichimo, E. Furia, S. Straface, Chemosphere. 180 (2017) 11—23. https://doi.org/10.1016/j.chemosphere.2017.03.137

N.M. Mora Alvarez, J.M. Pastrana, Y. Lagos, J.J. Lozada, Sustain. Chem. Pharm. 10 (2018) 60—70. https://doi.org/10.1016/j.scp.2018.09.004

J. Aurand,2018 OIV statistical report on world vitiviniculture 2018 world vitiviniculture situation. http://www.oiv.int/public/medias/6371/oiv-statistical-report-on-world-vitiviniculture-2018.pdf (accessed 3 March 2020).

M. A. Bustamante, R. Moral, C. Paredes, A. Pérez-Espinosa, J. Moreno-Caselles, M.D. Pérez-Murcia, Waste Manag. 28 (2008) 372—380. https://doi.org/10.1016/j.wasman.2007.01.013

R.A. Mulhack, R. Potumarthi, D.W. Jeffery, Waste Manag. 72 (2018) 99—118. https://doi.org/10.1016/j.wasman.2017.11.011

M.S Rodríguez-Cruz., E. Herrero-Hernández, J.M. Ordax, J.M. Marín-Benito, K. Draoui, M.J. Sánchez-Martín, Int. J. Environ. Anal. Chem. 92 (2012) 933—948. https://doi.org/10.1080/03067319.2011.609933

R. Portinho, O. Zanella, L.A. Féris, Grape stalk application for caffeine removal through adsorption. J. Environ. Manage. 202 (2017) 178—187. https://doi.org/10.1016/j.jenvman.2017.07.033

V. Grudić, J. Šćepanović, I. Bošković, 2015 Chem. Ind. Chem. Eng. Q. 21(2015) 285—293. https://doi.org/10.2298/CICEQ140418027G

I. Villaescusa, N. Fiol, M. Martínez, N. Miralles, J. Poch, J. Serarols, Water Res. 38 (2004) 992—1002. https://doi.org/10.1016/j.watres.2003.10.040

C. Liu, D. Pujol, N. Fiol, M.À. Olivella, F. de la Torre, J. Poch, I. Villaescusa, Water Air Soil Pollut. 226 (2015) 2006. https://doi.org/10.1007/s11270-014-2006-x

R. Chand, K. Narimura, H. Kawakita, K. Ohto, T. Watari, K. Inoue, J. Hazard. Mater. 163 (2009) 245—2502. https://doi.org/10.1016/j.jhazmat.2008.06.084

A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, IOSR-JAC. 3 (2012) 38—45. https://doi.org/10.9790%2F5736-0313845

M.P. Di Bello, L. Mergola, S. Scorrano, R. Del Sole, Polym. Int. 66 (2017) 1055—1063. https://doi.org/10.3390/ma10101133

V.B.H. Dang, H.D. Doan, T. Dang-Vu, A. Lohi, Bioresour. Technol. 100 (2009) 211—219. https://doi.org/10.1016/j.biortech.2008.05.031

F. Lionetto, R. Del Sole, D. Cannoletta, G. Vasapollo, A. Maffezzoli, Materials 5 (2012) 1910—1922. https://doi.org/10.3390/ma5101910

S. Zmora-Nahuma, Y. Hadarb, Y. Soil Biol Biochem, 39 (2007) 1263—1276. https://doi.org/10.1016/j.soilbio.2006.12.017

N. Naowanat, N. Thouchprasitchai, S. Pongstabodee, J. Environ. Manage. 169 (2016) 103—115. https://doi.org/10.1016/j.jenvman.2015.12.024