Superkapabaterija na bazi polipirola i cinka sa vodenim rastvorom elektrolita
Glavni sadržaj članka
Apstrakt
Elektroda na bazi polipirola (PPY) dobijena je na grafitu elektrohemijskom polimerizacijom pirola iz vodenog rastvora koji je sadržavao 0,1 mol dm–3 pirola i 1,0 mol dm–3 HCl. Polimerizacija je ostvarena u galvanostatskim uslovima, gustinom struje od 2 mA cm–2 u trajanju od 1 h. Aktivna masa polipirola je procenjana na 14 mg. Na osnovu galvanostatskih krivih punjenja i pražnjenja (dopovanja i dedopovanja) elektrode na bazi PPY u vodenom rastvoru koji je sadržavao 2,0 mol dm–3 NH4Cl i 1,1 mol dm–3 ZnCl2, dobijenih različitim strujama, odeđena je efikasnost iskorišćenja kapaciteta ove elektrode. Formirana je ćelija u kojoj je elektroda na bazi PPY korišćena kao katoda u kombinaciji sa anodom od cinka i vodenim rastvorom 2,0 mol dm–3 NH4Cl i 1,1 mol dm–3 ZnCl2. Praćen je napon punjenja/pražnjenja Zn|PPY ćelije različitim strujama, na osnovu čega su procenjeni relevantni električni parametri Zn|PPY ćelije. Na osnovu proračunatih električnih parametara, specifične kapacitivnosti, specifične snage i specifične energije, ispitivana Zn|PPY ćelija se može klasifikovati u kategoriju "superkapabaterija".
Detalji članka
Broj časopisa
Rubrika
Kada je rukopis prihvaćen za objavlјivanje, autori prenose autorska prava na izdavača. U slučaju da rukopis ne bude prihvaćen za štampu u časopisu, autori zadržavaju sva prava.
Na izdavača se prenose sledeća prava na rukopis, uklјučujući i dodatne materijale, i sve delove, izvode ili elemente rukopisa:
- pravo da reprodukuje i distribuira rukopis u štampanom obliku, uklјučujući i štampanje na zahtev;
- pravo na štampanje probnih primeraka, reprint i specijalnih izdanja rukopisa;
- pravo da rukopis prevede na druge jezike;
- pravo da rukopis reprodukuje koristeći fotomehanička ili slična sredstva, uklјučujući, ali ne ograničavajući se na fotokopiranje, i pravo da distribuira ove kopije;
- pravo da rukopis reprodukuje i distribuira elektronski ili optički koristeći sve nosioce podataka ili medija za pohranjivanje, a naročito u mašinski čitlјivoj/digitalizovanoj formi na nosačima podataka kao što su hard disk, CD-ROM, DVD, Blu-ray Disc (BD), mini disk, trake sa podacima, i pravo da reprodukuje i distribuira rukopis sa tih prenosnika podataka;
- pravo da sačuva rukopis u bazama podataka, uklјučujući i onlajn baze podataka, kao i pravo prenosa rukopisa u svim tehničkim sistemima i režimima;
- pravo da rukopis učini dostupnim javnosti ili zatvorenim grupama korisnika na osnovu pojedinačnih zahteva za upotrebu na monitoru ili drugim čitačima (uklјučujući i čitače elektonskih knjiga), i u štampanoj formi za korisnike, bilo putem interneta, onlajn servisa, ili putem internih ili eksternih mreža.
Kako citirati
Reference
Rüetschi P, Energy storage and the environment: the role of battery technology, J Power Sources, 1993; 42: 1–7.
Beck F, Rüetschi P, Rechargeable batteries with aqueous electrolytes, Electrochim Acta, 2000; 42: 2467–2482.
Jugović B, Gvozdenović M, Stevanović J, Trisović T, Grgur B, Characterization of electrochemically synthesized PANI on graphite electrode for potential use in elec-trochemical power sources, Mat Chem Phys, 2009; 114: 939–942.
Gvozdenović M, Jugović B, Trisović T, Stevanović J, Grgur B, Electrochemical characterization of polyaniline electrode in ammonium citrate containing electrolyte, Mat Chem Phys, 2011; 125: 601–605.
Holze R, Wu YP, Intrinsically conducting polymers in electrochemical energy technology: Trends and prog-ress, Electrochim Acta, 2014; 122: 93–107.
Snook GA, Kao P, Best AS, Conducting-polymer-based supercapacitor devices and electrodes, J Power Sources, 2011; 196: 1–12.
Li S, Zai Guo P, Wang CY, Wallace GG, Liu HK, Flexible cellulose based polypyrrole–multiwalled carbon nano-tube films for bio-compatible zinc batteries activated by simulated body fluids, J Mater Chem A, 2013; 1: 14300–
–14305.
Manjunatha H, Suresh GS, Venkatesha TV, Electrode materials for aqueous rechargeable lithium batteries, J Solid State Electrochem, 2011; 15: 431–445.
Wang G, Qu Q, Wang B, Shi Y, Tian S, Wu Y, An aqueous electrochemical energy storage system based on doping and intercalation: Ppy/LiMn2O4, Chem Phys Chem, 2008; 9: 2299–2301.
Nyström G, Razaq A, Strømmev M, Nyholm L, Mihra-nyan A, Ultrafast all-polymer paper-based batteries, Nano Lett, 2009; 9: 3635–3639.
Grgur BN, Gvozdenović MM, Stevanović J, Jugović BZ, Marinović VM, Polypyrrole as possible electrode mat-erials for the aqueous-based rechargeable zinc bat-teries, Electrochim, Acta, 2008; 53: 4627–4632.
Suematsu S, Oura Y, Tsujimoto H, Kanno H, Naoi K, Conducting polymer films of cross-linked structure and their QCM analysis, Electrochim Acta, 2000; 45: 3813–
–3821.
Alguail AA, Al-Eggiely AH, Gvozdenović MM, Jugović BZ, Grgur BN, Battery type hybrid supercapacitor based on polypyrrole and lead-lead sulfate, J Power Sources, 2016; 313: 240–246.
Carrasco PM, Cortazar M, Ochoteco E, Calahorra E, Pomposo JA, Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium and high conductivity, Surf Interface Anal, 2007; 39: 26–32.
Weidlich C, Mangold KM, Jüttner K, EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes, Electrochim Acta, 2005; 50: 1547–1552.
Vernitskaya TV, Efimov ON, Polypyrrole: a conducting polymer; its synthesis, properties, and applications, Russ Chem Rev, 1997; 66: 443–457.
Mazeikiene R, Malinauskas A, Kinetics of the electro-chemical degradation of polypyrrole, Polym Degrad Stab, 2002; 75: 255–258.
Li Y, Qian R, Electrochemical overoxidation of con-ducting polypyrrole nitrate film in aqueous solutions, Electrochim Acta, 2000; 45: 1727–1731.
Shukla AK, Banerjee A, Ravikumar MK, Jalajakshi A, Electrochemical capacitors: Technical challenges and prognosis for future markets, Electrochim Acta, 2012; 84: 165–173.
Cericola D, Kötz R, Hybridization of rechargeable bat-teries and electrochemical capacitors: Principles and limits, Electrochim Acta, 2012; 72: 1–17.
Zhao X, Sánchez BM, Dobson PJ, Grant PS, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 2011; 3: 839–855.
Yu L, Chen GZ, Redox electrode materials for super-capatteries, J Power Sources, 2016; 326: 604–612.
Linpo Yua L, Chen GZ, High energy supercapattery with an ionic liquid solution of LiClO4, Faraday Discuss, 2016; 190: 231–240.