Kinetika procesa pečenja/selektivne redukcije uz upotrebu mešavine bitumenskog uglja i lož ulja kao aditiva Stručni rad
Glavni sadržaj članka
Apstrakt
Lateritna ruda je trenutno glavna sirovina koja omogućava ekstrakciju nikla Caron procesom. Do danas, kinetičko ponašanje procesa pečenja/selektivne redukcije lateritnih ruda nikla u pilot postrojenju je nedovoljno istraženo. U ovoj studiji, kinetičko ponašanje, faza koja kon¬troliše i mehanizmi koji opisuju ovaj proces primenom mešavine 2,00 mas.% bitu¬menskog uglja i 1,25 mas.% mazuta kao redukcionog aditiva određivani su tokom evaluacije visokog i niskog toplotnog profila. Faze redukovanih/izluženih minerala i polazne rude analizirane su rendgenskom difrakcijom praha. Pokazano je da smeša koja se koristi kao redukcioni aditiv garantuje adekvatnu transformaciju u oba termička profila; odnos između zaostalog nikla i vremena zadržavanja je opisan reakcijom prvog reda sa koeficijentima determinacije većim od 0,949. Iako nije analiziran uticaj vazduha posle sagorevanja, faza koja kontroliše proces je bila difuzija kroz sloj pepela sa energijom aktivacije od 14,4060 kJ mol-1. Dakle, najpreciznija kombinacija za opisivanje procesa je difuzija kroz sloj pepela i rast jezgara.
Detalji članka
Broj časopisa
Rubrika

Ovaj rad je pod Creative Commons Autorstvo 4.0 Internacionalna licenca.
Kada je rukopis prihvaćen za objavlјivanje, autori prenose autorska prava na izdavača. U slučaju da rukopis ne bude prihvaćen za štampu u časopisu, autori zadržavaju sva prava.
Na izdavača se prenose sledeća prava na rukopis, uklјučujući i dodatne materijale, i sve delove, izvode ili elemente rukopisa:
- pravo da reprodukuje i distribuira rukopis u štampanom obliku, uklјučujući i štampanje na zahtev;
- pravo na štampanje probnih primeraka, reprint i specijalnih izdanja rukopisa;
- pravo da rukopis prevede na druge jezike;
- pravo da rukopis reprodukuje koristeći fotomehanička ili slična sredstva, uklјučujući, ali ne ograničavajući se na fotokopiranje, i pravo da distribuira ove kopije;
- pravo da rukopis reprodukuje i distribuira elektronski ili optički koristeći sve nosioce podataka ili medija za pohranjivanje, a naročito u mašinski čitlјivoj/digitalizovanoj formi na nosačima podataka kao što su hard disk, CD-ROM, DVD, Blu-ray Disc (BD), mini disk, trake sa podacima, i pravo da reprodukuje i distribuira rukopis sa tih prenosnika podataka;
- pravo da sačuva rukopis u bazama podataka, uklјučujući i onlajn baze podataka, kao i pravo prenosa rukopisa u svim tehničkim sistemima i režimima;
- pravo da rukopis učini dostupnim javnosti ili zatvorenim grupama korisnika na osnovu pojedinačnih zahteva za upotrebu na monitoru ili drugim čitačima (uklјučujući i čitače elektonskih knjiga), i u štampanoj formi za korisnike, bilo putem interneta, onlajn servisa, ili putem internih ili eksternih mreža.
Kako citirati
Reference
[1] Bartzas G, Tsakiridis PE, Komnitsas K. Nickel industry: Heavy metal(loid)s contamination - sources, environmental impacts and recent advances on waste valorization. Curr Opin Environ Sci Heal. 2021; 21: 100253. https://doi.org/10.1016/j.coesh.2021.100253
[2] Mitterecker J, Košević M, Stopic S, Friedrich B, Panić V, Stevanović J, Mihailović M. Electrochemical Investigation of Lateritic Ore Leaching Solutions for Ni and Co Ions Extraction. Metals (Basel). 2022; 12(2): 325 https://doi.org/10.3390/met12020325
[3] Hu X, Ma B, He F, Chen Y, Wang C. Mineralogical characterization of low-grade nickel laterites from the North Oman Mountains: Using mineral liberation analyses - scanning electron microscopy-based automated quantitative mineralogy. Ore Geol Rev. 2020; 120: 103429. https://doi.org/10.1016/j.oregeorev.2020.103429
[4] Zevgolis EN, Daskalakis KA. The Nickel Production Methods from Laterites and the Greek Ferronickel Production among Them. Mater Proc. 2021; 5(1): 104. https://doi.org/10.3390/materproc2021005104.
[5] Pintowantoro S, Widyartha AB, Setiyorini Y, Abdul F. Sodium Thiosulfate and Natural Sulfur: Novel Potential Additives for Selective Reduction of Limonitic Laterite Ore. J Sustain Metall .2021; 7(2): 481-494. doi: 10.1007/s40831-021-00352-4.
[6] Moats MS, Davenport WG: Chapter 2.3 Nickel and Cobalt, In Treatise on Process Metallurgy. 2nd ed. Elsevier; 2024: 575-604. https://doi.org/10.1016/B978-0-323-85373-6.00030-2.
[7] Caron MH. Fundamental and practical factors in ammonia leaching of nickel and cobalt ores. JOM. 1950; 2(1): 67-90. https://doi.org/10.1007/BF03398981.
[8] Caron MH. “Separation of Nickel and Cobalt” JOM. 1950; 2(1): 91-103. https://doi.org/10.1007/BF03398982.
[9] Kießling F, Stopic S, Gürmen S, Friedrich B. Recovery of Diamond and Cobalt Powders from Polycrystalline Drawing Die Blanks via Ultrasound Assisted Leaching Process—Part 2: Kinetics and Mechanisms. Metals (Basel) 2020; 10(6): 741. https://doi.org/10.3390/met10060741.
[10] Rodriguez R. Reduction in energy cost in Cuban Caron Process Plants. In: International Laterite Nickel Symposium 2004 (as held during the 2004 TMS Annual Meeting). The Minerals, Metals & Materials Society 2004, pp. 657-664. ISBN: 0-87339-550-6.
[11] Caetano GC, Ostroski IC, de Barros MASD. Lateritic Nickel and Cobalt Recovery Routes: Strategic Technologies. Miner Process Extr Metall Rev. 2024; 400-414. https://doi.org/10.1080/08827508.2024.2328696.
[12] Canterford Jh. Oxide Ores of Nickel — The Australian Situation. Miner Process Extr Metall Rev. 1983; 1(1-2): 85-109. https://doi.org/10.1080/08827508308952590.
[13] Coello-Velázquez AL, Quijano Arteaga V, Menéndez-Aguado JM, Pole FM, Llorente L. Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit. Metals (Basel). 2019; 9(8): 882. https://doi.org/10.3390/met9080882.
[14] De Graaf JE. The treatment of lateritic nickel ores — a further study of the caron process and other possible improvements. Part I. Effect of reduction conditions. Hydrometallurgy 1979; 5(1): 47-65. https://doi.org/10.1016/0304-386X(79)90027-6.
[15] Mano ES., Caner L., Petit S., Chaves AP., Mexias, A. S. Ni-smectitic ore behaviour during the Caron process. Hydrometallurgy. 2019; 186: 200-209. https://doi.org/10.1016/j.hydromet.2019.04.010.
[16] Angulo Palma HJ, Legrá AL, Urgellés AL, Gálvez E, Castillo J. Post-combustion Effect on Nickel and Cobalt Extractions from the Caron Process. In: Bindhu V, Tavares JM, Ţălu Ş, eds. Proceedings of Fourth International Conference on Inventive Material Science Applications. Springer, Singapore 2022; 515-527. https://doi.org/10.1007/978-981-16-4321-7_43.
[17] Ramírez Pérez IM, Ramírez Serrano B. Efecto de la postcombustión sobre los principales índices técnico-económicos en un horno Herreshoff para la producción de níquel. Post-combustion effect on the main technical-economic indices in the Herreshoff furnace for nickel production. Min Geol. 2021; 37(4): 426-444. (Spanish).
[18] Angulo Palma HJ, Terencio Guevara PL, Legrá AL, Videaux Arcia L. Análisis especiales en un horno de reducción de níquel a escala de Planta Piloto. Special Analysis in a Nickel Reduction Furnace at Pilot Plant scale. RTQ. 2017; 37(3): 484-499. (Spanish).
[19] Pickles CA, Anthony W. A Thermodynamic Study of the Reduction of a Limonitic Laterite Ore by Methane. High Temp Mater Proc. 2018; 37(9-10): 909-919. https://doi.org/10.1515/htmp-2017-0106.
[20] Pickles CA, Anthony W. Thermodynamic modelling of the reduction of a saprolitic laterite ore by methane. Miner Eng. 2018; 120: 47-59. https://doi.org/10.1016/j.mineng.2018.02.006.
[21] Ilyas S, Kim H, Srivastava RR. Carbothermic Reduction Roasting of a Low-Grade Nickel Laterite Ore in the Modified Caron Process. In: C. Anderson et al., eds. The 5th International Symposium on Nickel and Cobalt. Switzerland: Springer Nature; 2021: 317-328. https://doi.org/10.1007/978-3-030-65647-8_27.
[22] Ilyas S, Srivastava RR, Kim H, Ilyas N, Sattar R. Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Sep Purif Technol. 2020; 232: 115971. https://doi.org/10.1016/j.seppur.2019.115971.
[23] Angulo Palma HJ, Legrá AL, Hernández Pedrera C, Lamorú Urgellés A, Vega Cala RJ. Efecto de la sustitución del petróleo aditivo por carbón bituminoso en el proceso de reducción de lateritas. Effect Substit Addit Oil with Bitum Coal Process Reducing Laterites. RTQ. 2018; 38: 750-764. (Spanish).
[24] De Alvarenga Oliveira V, dos Santos CG, de Albuquerque Brocchi E. Assessing the Influence of NaCl on the Reduction of a Siliceous Laterite Nickel Ore Under Caron Process Conditions. Metall Mater Trans B. 2019; 50(3): 1309-1321. https://doi.org/https://doi.org/10.1007/s11663-019-01552-w.
[25] Angulo Palma HJ, Legrá AL, Hernández Pdrera C, Lamorú Urgellés A, Toro Villarroel N. Reducción de menas lateríticas utilizando como aditivo mezclas de carbón bituminoso y petróleo. Reduction of lateritic minerals using additive mixtures of bituminous coal and oil. RTQ. 2020; 40: 93-105. (Spanish).
[26] Angulo Palma HJ., Legrá AL., Lamorú Urgellés A., Hernández Pedrera C., Gallegos S., Galleguillos Madrid FM., Toro Villarroel, N. Use of a mixture of coal and oil as an additive for selective reduction of lateritic ore by the Caron process: Hem Ind. 2024; 78: 17-27. https://doi.org/10.2298/HEMIND230118017A.
[27] Sant B. Chemical reaction engineering. Talanta. 1968; 15(12): 1483-1486. https://doi.org/10.1016/0039-9140(68)80211-5.
[28] Levenspiel O. Chemical Reaction Engineering. 3rd ed., New York, NY: John Wiley & Sons; 1999. ISBN 0-471-25424-X.
[29] Li B., Ding Z., Wei Y., Wang H., Yang Y., Barati M. Kinetics of reduction of low-grade nickel laterite ore using carbon monoxide. Metall Mater Trans B. 2018; 49: 3067-3073. https://doi.org/10.1007/s11663-018-1367-8.
[30] Cabrera G, Gómez JM, Hernández I, Coto O, Cantero D. Different strategies for recovering metals from CARON process residue. J Hazard Mater. 2011; 189(3): 836-42. https://doi.org/10.1016/j.jhazmat.2011.03.048.
[31] Rhamdhani MA, Chen J., Hidayat T, Jak E., Hayes P. Advances in research on nickel production through the Caron process. In: Harre J, ed. Proceedings of European Metallurgical Conference 2009. Germany: GDMB; 2009: 899-914. ISBN 978-3-940276-19-3.
[32] Rhamdhani MA, Hayes PC, Jak E. Nickel laterite Part 1-microstructure and phase characterisations during reduction roasting and leaching. Miner Process Extr. 2009; 118: 129-145. https://doi.org/10.1179/174328509X431391.
[33] Rhamdhani MA, Hayes PC, Jak E. Nickel laterite Part 2-thermodynamic analysis of phase transformations occurring during reduction roasting. Miner Process Extr. 2009; 118: 146-155. https://doi.org/10.1179/174328509X431409.
[34] Valix M, Cheung W. Effect of sulfur on the mineral phases of laterite ores at high temperature reduction. Miner Eng. 2002; 15(7): 523-530. https://doi.org/10.1016/S0892-6875(02)00069-9.
[35] Valix M, Cheung WH. Study of phase transformation of laterite ores at high temperature. Miner Eng. 2002; 15(8): 607-612. https://doi.org/10.1016/S0892-6875(02)00068-7.
[36] Shoubao L, Eng B, Eng M. Study of nickeliferrous laterite reduction. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Master Engineering, University of Science and Technology, Beijing; 1999.https://translate.google.com/?sl=en&tl=es&text=Study%20of%20nickeliferrous%20laterite%20reduction&op=translate.
[37] Castellanos Suárez J. Cinética de la reducción de los minerales oxidados de níquel en Cuba. Kinetics of the reduction of oxidized nickel minerals in Cuba. Min Geol. 1984; 2: 197-222. (Spanish).
[38] Shofi A, Supriyatna Y, Prasetyo AB. Selective Reduction of Southeast Sulawesi Nickel Laterite using Palm Kernel Shell Charcoal: Kinetic Studies with Addition of Na2SO4 and NaCl as Additives. Bull Chem React Eng Catal. 2020; 15(2), 501-513. https://doi.org/10.9767/bcrec.15.2.7733.501-513.