Uticaj temperature na fizičkohemijska svojstva eutektičkih rastvarača sa lecitinom i njihova upotreba u transesterifikaciji katalizovanoj CaO Naučni rad
Glavni sadržaj članka
Apstrakt
Zbog različitih strukturnih varijacija i mogućnosti prilagođavanja njihovih fizičkohemijskih svojstava, eutektički rastvarači se nazivaju ,,dizajnerski rastvarači”. Za industrijsku primenu eutektičkih rastvarača, važno je poznavati njihova fizička i termodinamička svojstva poput gustine, viskoziteta i indeksa prelamanja. Ova svojstva su merena u funkciji temperature za tri eutektička rastvarača lecitina sa glicerolom, trietanolaminom i oleinskom kiselinom. Za opisivanje viskoziteta primenjene su Arenijusova i jednačina Vogela, Tamana i Fulčera (Vogel-Tamman-Fulcher). Gustina, viskozitet i indeks prelamanja testiranih eutektičkih rastvarača opadali su sa porastom temperature. Eutektički rastvarač lecitin:glicerol (LEC:G) je imao najmanju gustinu na svim testiranim temperaturama. Na kraju, eutektički rastvarač LEC:G je izabran kao kosolvent u etanolizi hladno ceđenog ulja semena crne slačice (Brassica nigra L.) katalizovanoj žarenim ili nežarenim CaO. Reakcija je izvedena u šaržnom reaktoru uz stalno mešanje i pri sledećim reakcionim uslovima: temperatura 70 °C, molski odnos etanol-ulje 12:1, koncentracija eutektičkog rastvarača 20 mas. % (u odnosu na masu ulja) i koncentracija CaO 10 mas. % (u odnosu na masu ulja). Prisustvo eutektičkog rastvarača ubrzalo je reakciju i separaciju faza finalne reakcione smeše..
Detalji članka
Broj časopisa
Rubrika

Ovaj rad je pod Creative Commons Aуторство-Nekomercijalno-Bez prerade 4.0 Internacionalna licenca.
Kada je rukopis prihvaćen za objavlјivanje, autori prenose autorska prava na izdavača. U slučaju da rukopis ne bude prihvaćen za štampu u časopisu, autori zadržavaju sva prava.
Na izdavača se prenose sledeća prava na rukopis, uklјučujući i dodatne materijale, i sve delove, izvode ili elemente rukopisa:
- pravo da reprodukuje i distribuira rukopis u štampanom obliku, uklјučujući i štampanje na zahtev;
- pravo na štampanje probnih primeraka, reprint i specijalnih izdanja rukopisa;
- pravo da rukopis prevede na druge jezike;
- pravo da rukopis reprodukuje koristeći fotomehanička ili slična sredstva, uklјučujući, ali ne ograničavajući se na fotokopiranje, i pravo da distribuira ove kopije;
- pravo da rukopis reprodukuje i distribuira elektronski ili optički koristeći sve nosioce podataka ili medija za pohranjivanje, a naročito u mašinski čitlјivoj/digitalizovanoj formi na nosačima podataka kao što su hard disk, CD-ROM, DVD, Blu-ray Disc (BD), mini disk, trake sa podacima, i pravo da reprodukuje i distribuira rukopis sa tih prenosnika podataka;
- pravo da sačuva rukopis u bazama podataka, uklјučujući i onlajn baze podataka, kao i pravo prenosa rukopisa u svim tehničkim sistemima i režimima;
- pravo da rukopis učini dostupnim javnosti ili zatvorenim grupama korisnika na osnovu pojedinačnih zahteva za upotrebu na monitoru ili drugim čitačima (uklјučujući i čitače elektonskih knjiga), i u štampanoj formi za korisnike, bilo putem interneta, onlajn servisa, ili putem internih ili eksternih mreža.
Kako citirati
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-68/2022-14/200133 -
Serbian Academy of Sciences and Arts
Grant numbers 0-14-18
Reference
Bergua F, Delso I, Muñoz-Embid J, Lafuente C, Artal M. Structure and properties of two glucose-based deep eutectic systems. Food Chem. 2021; 336: 127717. https://doi.org/10.1016/j.foodchem.2020.127717
Balaraman HB, Rathnasamy SK. Kinetics and microwave-assisted extractive transesterification studies of high octane methyl esters (HOME) from karanja and chicken lard oil using protic deep eutectic solvent. Fuel. 2020; 268: 117299. https://doi.org/10.1016/j.fuel.2020.117299
Manurung R, Taslim T, Siregar AGA. Deep eutectic solvents based choline chloride for enzymatic biodiesel production from degumming palm oil. Asian J. Chem. 2020; 3: 733–738. https://doi.org/10.14233/ajchem.2020.22193
Troter DZ, Todorović ZB, Đokić-Stojanović DR, Veselinović LjM, Zdujić MV, Veljković VB. Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil. J Mol Liq. 2018; 266: 557–567. https://doi.org/10.1016/j.molliq.2018.06.106
Merza F, Fawzy A, AlNashef I, Al-Zuhair S., Taher H. Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Rep. 2018; 4: 77–83. https://doi.org/10.1016/j.egyr.2018.01.005
Gu L, Huang W, Tang S, Tian S, Zhang X. A novel deep eutectic solvent for biodiesel preparation using a homogeneous base catalyst. Chem Eng Sci. 2015; 259: 647–652. https://doi.org/10.1016/j.cej.2014.08.026
Zhang Y, Xia X, Duan M, Han Y, Liu J, Luo M, Zhao C, Zu Y, Fu Y. Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation. J Mol Catal B Enzym. 2016; 123: 35–40. https://doi.org/10.1016/j.molcatb.2015.10.013
Alam MM, Rahman KA. Biodiesel from mustard oil: a sustainable engine fuel substitute for Bangladesh. Int J Renew Energy Dev. 2013; 2: 141–149. https://doi.org/10.14710/ijred.2.3
Đorđević BS, Troter DZ, Todorović ZB, Đalović IG, Stanojević LjP, Mitrović PM, Veljković VB. The effect of the triethanolamine: glycerol deep eutectic solvent on the yield, fatty acid composition, antioxidant activity, and physicochemical properties of black mustard (Brassica nigra L.) seed oil. J Food Meas Charact. 2020; 14: 2570–2577. https://doi.org/10.1007/s11694-020-00503-3
Aslan V, Eryilmaz T. Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH, Energy. 2020; 209: 118386. https://doi.org/10.1016/j.energy.2020.118386
Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005; 86: 1059‒70. https://doi.org/10.1016/j.fuproc.2004.11.002
Shahzadi I, Sadaf S, Iqbal J, Ullah I, Bhatti HN. Evaluation of mustard oil for the synthesis of biodiesel: Pretreatment and optimization study. Environ Prog Sustain Energy. 2018; 37: 1829–1835. https://doi.org/10.1002/ep.12833
Robert C, Couëdelo L, Vaysse C, Michalski M-C. Vegetable lecithins: a review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie. 2020; 169: 121–132. https://doi.org/10.1016/j.biochi.2019.11.017
Jung Y-G, Lee C-R, Kim H-J, Kim Min-G, Jin KS, Lee H-Y. Effect of hydrocarbon chain length of aliphatic solvents on the reverse self-assembly of lecithin and monovalent ion mixtures. Colloids Surf A Physicochem Eng Asp. 2020; 607: 125441. https://doi.org/10.1016/j.colsurfa.2020.125441
Tung SH, Huang YE, Raghavan SR. A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids. J Am Chem Soc. 2006; 128: 5751–5756. https://doi.org/10.1021/ja0583766
Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech. 2005; 6: 298–310. https://doi.org/10.1208/pt060240
Zou H, Zhao N, Li S, Sun S, Dong X, Yu C. Physicochemical and emulsifying properties of mussel water-soluble proteins as affected by lecithin concentration. Int J Biol. Macromol. 2020; 163: 180–189. https://doi.org/10.1016/j.ijbiomac.2020.06.225
Amiri-Rigi A., Abbasi S. Extraction of lycopene using a lecithin-based olive oil microemulsion. Food Chem. 2018; 272: 568–573. https://doi.org/10.1016/j.foodchem.2018.08.080
Shen Y, Chang C, Shi M, Su Y, Gu L, Li J, Yang Y. Interactions between lecithin and yolk granule and their influence on the emulsifying properties. Food Hydrocoll. 2019; 101: 105510. https://doi.org/10.1016/j.foodhyd.2019.105510
Xue J, Zhong Q. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin. J Agric Food Chem. 2014; 62: 9900–9907. https://doi.org/10.1021/jf5034366
Đorđević BS., Todorović ZB, Troter DZ, Stanojević LjP, Veljković VB. Extraction of quercetin from waste onion (Allium cepa L.) tunic by the aqueous solutions of different deep eutectic solvents. Adv Technol. 2018; 7: 5–10. https://doi.org/10.5937/SavTeh1802005d
Veljković VB, Stamenković OS, Todorović ZB, Lazić ML, Skala DU. Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel. 2009; 88: 1554–1562. https://doi.org/10.1016/j.fuel.2009.02.013
Stamenkoviæ OS, Rajkoviæ K, Velièkoviæ AV, Miliæ PS, Veljkoviæ VB. Optimization of base-catalyzed ethanolysis of sunflower oil by regression and artificial neural network models. Fuel Process Technol. 2013; 114: 101–108. https://doi.org/10.1016/j.fuproc.2013.03.038
Veličković AV, Stamenković OS, Todorović ZB, Veljković VB. Application of the full factorial design to optimization of base–catalyzed sunflower oil ethanolysis. Fuel. 2013; 104: 433–442. https://doi.org/10.1016/j.fuel.2012.08.015
Constantin V, Adya AK, Popescu A-M. Density, transport properties and electrochemical potential windows for the 2-hydroxy-N,N,N-trimethylethanaminium chlorides based ionic liquids at several temperatures. Fluid Phase Equilib. 2015; 395: 58–66. https://doi.org/10.1016/j.fluid.2015.03.025
Mitar A, Panić M, Prlić Kardum J, Halambek J, Sander A, Zagajski Kučan K, Radojčić Redovniković I, Radošević K. Physicochemical properties, cytotoxicity, and antioxidative activity of natural deep eutectic solvents containing organic acid. Chem Biochem Eng Q. 2019; 33: 1–18. https://doi.org/10.15255/CABEQ.2018.1454
Troter DZ, Todorović ZB, Đokić–Stojanović DR, Đordević BS, Todorović VM, Konstantinović SS, Veljković VB. The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents. J Serbian Chem Soc. 2017; 82: 1039–1052. https://doi.org/10.2298/jsc170225065t
Ramón DJ, Guillena G. Deep Eutectic Solvents: Synthesis, Properties, and Applications, John Wiley & Sons; 2020; 1–21.
Siongco KR, Leron RB, Li M-H. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride-glycerol or -ethylene glycol deep eutectic solvents and their aqueous solutions. J Chem Thermodyn. 2013; 65: 65–72. https://doi.org/10.1016/j.jct.2013.05.041
Jibril B, Mjalli F, Naser J, Gano Z. New tetrapropylammonium bromide–based deep eutectic solvents: Synthesis and characterizations. J Mol Liq. 2014; 199: 462–469. https://doi.org/10.1016/j.molliq.2014.08.004
AlOmar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA. Glycerol–based deep eutectic solvents: Physical properties. J Mol Liq. 2016; 215: 98–103. https://doi.org/10.1016/j.molliq.2015.11.032
Lapeña D, Lomba L, Artal M, Lafuente C, Giner B. The NADES glyceline as a potential green Solvent: A comprehensive study of its thermophysical properties and effect of water inclusion. J Chem Thermodyn. 2019; 128: 164–172. https://doi.org/10.1016/j.jct.2018.07.031
Bahadori L, Chakrabarti MH, Mjalli FS, AlNashef IM, Manan NSA, Hashim MA. Physicochemical properties of ammonium–based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim Acta, 2013; 113: 205–211. https://doi.org/10.1016/j.electacta.2013.09.102
Troter DZ, Zlatković MZ, Đokić-Stojanović DR, Konstantinović SS, Todorović ZB. Citric acid-based deep eutectic solvents: Physical properties and their use as cosolvents in sulphuric acid-catalysed ethanolysis of oleic acid. Adv Technol. 2016; 5: 53–65. https://doi.org/10.5937/savteh1601053t
Glasser L. Thermodynamic estimation: Ionic materials. J Solid State Chem. 2013; 206: 139–144. https://doi.org/10.15744/2348-9812.1.e105
Haynes WM. CRC Handbook of chemistry and physics, A ready reference book of chemical and physical data, 94th ed., CRC Press, Taylor & Francis Group, Boca Raton, FL; 2013; pp. 12–21.
Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi YM, Al-Wahaibi T, Hashim MA. Glucose-based deep eutectic solvents: Physical properties. J Mol Liq. 2013; 178: 137. https://doi.org/10.1016/j.molliq.2012.11.025
Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th Expanded Edition, Cambridge University Press, United Kingdom; 1999; pp. 11–14.
Ghaedi H, Ayoub M, Sufian S, Shariff AM, Lal B, Wilfred CD. Density and refractive index measurements of transition-temperature mixture (deep eutectic analogues) based on potassium carbonate with dual hydrogen bond donors for CO2 capture. J Chem Thermodyn. 2018; 118: 147. https://doi.org/10.1016/j.jct.2017.11.008
Wu TY, Su S-G, Lin YC, Wang HP, Lin MW, Gung ST, Sun IW. Electrochemical and physicochemical properties of cyclic amine-based Brønsted acidic ionic liquids. Electrochim Acta. 2010; 56: 853–862. https://doi.org/10.1016/j.electacta.2010.09.084
Đorđević BS, Troter DZ, Veljković VB, Kijevčanin MLj, Radović IR, Todorović ZB. The physicochemical properties of the deep eutectic solvents with triethanolamine as a major component. J Serb Chem Soc. 2020; 85: 1303–1315. https://doi.org/10.2298/JSC200425050D
Esipovich A, Danov S, Belousov A, Rogozhin A. Improving methods of CaO transesterification activity. J Mol Catal A Chem. 2014; 395: 225–233. https://doi.org/10.1016/j.molcata.2014.08.011
Veličković AV, Avramović JM, Stamenković OS, Veljković VB. Kinetics of the sunflower oil ethanolysis using CaO as catalyst. Chem Ind Chem Eng Q. 2016; 22: 409–418. https://doi.org/10.2298/ciceq160106003v
Huang W, Tang S., Zhao H, Tian S. Activation of commercial CaO for biodiesel production from rapeseed oil using a novel deep eutectic solvent. Ind Eng Chem Res. 2013; 52: 11943–11947. https://doi.org/10.1021/ie401292w
Manurung R, Ramadhani DA, Maisarah S. One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production. AIP Conf. Proc. 2017; 1855: 070004. https://doi.org/10.1063/1.4985531
Manurung R, Winarta A, Taslim Indra L. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as cosolvent, IOP Conf. Ser.: Mater. Sci. Eng. 2017; 206: 012023. https://doi.org/10.1088/1757-899X/206/1/012023
di Bitonto L, Reynel-Avila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Duran-Valle CJ, Pastore C. Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production. Renew Energy. 2020; 160: 52–66. https://doi.org/10.1016/j.renene.2020.06.045
Chen X, Li Z, Chun Y, Yang F, Xu H, Wu X. Effect of the formation of diglycerides/monoglycerides on the kinetic curve in oil transesterification with methanol catalyzed by calcium oxide. ACS Omega. 2020; 5: 4646−4656. https://doi.org/10.1021/acsomega.9b04431
Ramos M, Dias A PS, Teodoro F. Soybean oil ethanolysis over Ca based catalyst. Statistical optimization of reaction conditions. React Kinet Mech Catal. 2020; 130: 433–445. https://doi.org/10.1007/s11144-020-01791-y
Sánchez-Cantú M, Reyes–Cruz FM, Rubio–Rosas E, Pérez–Díaz LM, Ramírez E, Valente JS. Direct synthesis of calcium diglyceroxide from hydrated lime and glycerol and its evaluation in the transesterification reaction. Fuel. 2014; 138: 126–133. https://doi.org/10.1016/j.fuel.2014.08.006
Kouzu M, Hidaka J, Wakabayashi K, Tsunomori M. Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Appl Catal A: Gen. 2010; 390: 11–18. https://doi.org/10.1016/j.apcata.2010.09.029
Rodriguez–Navarro C, Vettori I, Ruiz–Agudo E. Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: implications in heritage conservation using nanolimes. Langmuir. 2016; 32: 5183–5194. https://doi.org/10.1021/acs.langmuir.6b01065
Soares Dias AP, Ramos M, Catarino M, Puna J, Gomes J. Solvent assisted biodiesel production by co-processing beef tallow and soybean oil over calcium catalysts. Waste Biomass Valorization. 2019; 11: 6249–6259. https://doi.org/10.1007/s12649-019-00903-7