Uticaj temperature na fizičkohemijska svojstva eutektičkih rastvarača sa lecitinom i njihova upotreba u transesterifikaciji katalizovanoj CaO Naučni rad

Glavni sadržaj članka

Zoran Todorović
https://orcid.org/0000-0001-5761-2217
Biljana Đordević
https://orcid.org/0000-0002-7790-4679
Dragan Troter
https://orcid.org/0000-0001-6340-5476
Ljiljana Veselinović
https://orcid.org/0000-0002-6100-9178
Miodrag Zdujić
https://orcid.org/0000-0002-5747-4130
Vlada Veljković
https://orcid.org/0000-0002-1671-2892

Apstrakt

Zbog različitih strukturnih varijacija i mogućnosti prilagođavanja njihovih fizičkohemijskih svojstava, eutektički rastvarači se nazivaju ,,dizajnerski rastvarači”. Za industrijsku primenu eutektičkih rastvarača, važno je poznavati njihova fizička i termodinamička svojstva poput gustine, viskoziteta i indeksa prelamanja. Ova svojstva su merena u funkciji temperature za tri eutektička rastvarača lecitina sa glicerolom, trietanolaminom i oleinskom kiselinom. Za opisivanje viskoziteta primenjene su Arenijusova i jednačina Vogela, Tamana i Fulčera (Vogel-Tamman-Fulcher). Gustina, viskozitet i indeks prelamanja testiranih eutektičkih rastvarača opadali su sa porastom temperature. Eutektički rastvarač lecitin:glicerol (LEC:G) je imao najmanju gustinu na svim testiranim temperaturama. Na kraju, eutektički rastvarač LEC:G je izabran kao kosolvent u etanolizi hladno ceđenog ulja semena crne slačice (Brassica nigra L.) katalizovanoj žarenim ili nežarenim CaO. Reakcija je izvedena u šaržnom reaktoru uz stalno mešanje i pri sledećim reakcionim uslovima: temperatura 70 °C, molski odnos etanol-ulje 12:1, koncentracija eutektičkog rastvarača 20 mas. % (u odnosu na masu ulja) i koncentracija CaO 10 mas. % (u odnosu na masu ulja). Prisustvo eutektičkog rastvarača ubrzalo je reakciju i separaciju faza finalne reakcione smeše..

Detalji članka

Broj časopisa

Rubrika

Napredak u istraživanju proizvodnje biodizela

Kako citirati

[1]
Z. Todorović, B. . Đordević, D. . Troter, L. . Veselinović, M. Zdujić, and V. Veljković, “Uticaj temperature na fizičkohemijska svojstva eutektičkih rastvarača sa lecitinom i njihova upotreba u transesterifikaciji katalizovanoj CaO: Naučni rad”, Hem Ind, vol. 77, no. 1, pp. 53–67, Mar. 2023, doi: 10.2298/HEMIND220527016T.

Funding data

Reference

Bergua F, Delso I, Muñoz-Embid J, Lafuente C, Artal M. Structure and properties of two glucose-based deep eutectic systems. Food Chem. 2021; 336: 127717. https://doi.org/10.1016/j.foodchem.2020.127717

Balaraman HB, Rathnasamy SK. Kinetics and microwave-assisted extractive transesterification studies of high octane methyl esters (HOME) from karanja and chicken lard oil using protic deep eutectic solvent. Fuel. 2020; 268: 117299. https://doi.org/10.1016/j.fuel.2020.117299

Manurung R, Taslim T, Siregar AGA. Deep eutectic solvents based choline chloride for enzymatic biodiesel production from degumming palm oil. Asian J. Chem. 2020; 3: 733–738. https://doi.org/10.14233/ajchem.2020.22193

Troter DZ, Todorović ZB, Đokić-Stojanović DR, Veselinović LjM, Zdujić MV, Veljković VB. Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil. J Mol Liq. 2018; 266: 557–567. https://doi.org/10.1016/j.molliq.2018.06.106

Merza F, Fawzy A, AlNashef I, Al-Zuhair S., Taher H. Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Rep. 2018; 4: 77–83. https://doi.org/10.1016/j.egyr.2018.01.005

Gu L, Huang W, Tang S, Tian S, Zhang X. A novel deep eutectic solvent for biodiesel preparation using a homogeneous base catalyst. Chem Eng Sci. 2015; 259: 647–652. https://doi.org/10.1016/j.cej.2014.08.026

Zhang Y, Xia X, Duan M, Han Y, Liu J, Luo M, Zhao C, Zu Y, Fu Y. Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation. J Mol Catal B Enzym. 2016; 123: 35–40. https://doi.org/10.1016/j.molcatb.2015.10.013

Alam MM, Rahman KA. Biodiesel from mustard oil: a sustainable engine fuel substitute for Bangladesh. Int J Renew Energy Dev. 2013; 2: 141–149. https://doi.org/10.14710/ijred.2.3

Đorđević BS, Troter DZ, Todorović ZB, Đalović IG, Stanojević LjP, Mitrović PM, Veljković VB. The effect of the triethanolamine: glycerol deep eutectic solvent on the yield, fatty acid composition, antioxidant activity, and physicochemical properties of black mustard (Brassica nigra L.) seed oil. J Food Meas Charact. 2020; 14: 2570–2577. https://doi.org/10.1007/s11694-020-00503-3

Aslan V, Eryilmaz T. Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH, Energy. 2020; 209: 118386. https://doi.org/10.1016/j.energy.2020.118386

Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005; 86: 1059‒70. https://doi.org/10.1016/j.fuproc.2004.11.002

Shahzadi I, Sadaf S, Iqbal J, Ullah I, Bhatti HN. Evaluation of mustard oil for the synthesis of biodiesel: Pretreatment and optimization study. Environ Prog Sustain Energy. 2018; 37: 1829–1835. https://doi.org/10.1002/ep.12833

Robert C, Couëdelo L, Vaysse C, Michalski M-C. Vegetable lecithins: a review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie. 2020; 169: 121–132. https://doi.org/10.1016/j.biochi.2019.11.017

Jung Y-G, Lee C-R, Kim H-J, Kim Min-G, Jin KS, Lee H-Y. Effect of hydrocarbon chain length of aliphatic solvents on the reverse self-assembly of lecithin and monovalent ion mixtures. Colloids Surf A Physicochem Eng Asp. 2020; 607: 125441. https://doi.org/10.1016/j.colsurfa.2020.125441

Tung SH, Huang YE, Raghavan SR. A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids. J Am Chem Soc. 2006; 128: 5751–5756. https://doi.org/10.1021/ja0583766

Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech. 2005; 6: 298–310. https://doi.org/10.1208/pt060240

Zou H, Zhao N, Li S, Sun S, Dong X, Yu C. Physicochemical and emulsifying properties of mussel water-soluble proteins as affected by lecithin concentration. Int J Biol. Macromol. 2020; 163: 180–189. https://doi.org/10.1016/j.ijbiomac.2020.06.225

Amiri-Rigi A., Abbasi S. Extraction of lycopene using a lecithin-based olive oil microemulsion. Food Chem. 2018; 272: 568–573. https://doi.org/10.1016/j.foodchem.2018.08.080

Shen Y, Chang C, Shi M, Su Y, Gu L, Li J, Yang Y. Interactions between lecithin and yolk granule and their influence on the emulsifying properties. Food Hydrocoll. 2019; 101: 105510. https://doi.org/10.1016/j.foodhyd.2019.105510

Xue J, Zhong Q. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin. J Agric Food Chem. 2014; 62: 9900–9907. https://doi.org/10.1021/jf5034366

Đorđević BS., Todorović ZB, Troter DZ, Stanojević LjP, Veljković VB. Extraction of quercetin from waste onion (Allium cepa L.) tunic by the aqueous solutions of different deep eutectic solvents. Adv Technol. 2018; 7: 5–10. https://doi.org/10.5937/SavTeh1802005d

Veljković VB, Stamenković OS, Todorović ZB, Lazić ML, Skala DU. Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel. 2009; 88: 1554–1562. https://doi.org/10.1016/j.fuel.2009.02.013

Stamenkoviæ OS, Rajkoviæ K, Velièkoviæ AV, Miliæ PS, Veljkoviæ VB. Optimization of base-catalyzed ethanolysis of sunflower oil by regression and artificial neural network models. Fuel Process Technol. 2013; 114: 101–108. https://doi.org/10.1016/j.fuproc.2013.03.038

Veličković AV, Stamenković OS, Todorović ZB, Veljković VB. Application of the full factorial design to optimization of base–catalyzed sunflower oil ethanolysis. Fuel. 2013; 104: 433–442. https://doi.org/10.1016/j.fuel.2012.08.015

Constantin V, Adya AK, Popescu A-M. Density, transport properties and electrochemical potential windows for the 2-hydroxy-N,N,N-trimethylethanaminium chlorides based ionic liquids at several temperatures. Fluid Phase Equilib. 2015; 395: 58–66. https://doi.org/10.1016/j.fluid.2015.03.025

Mitar A, Panić M, Prlić Kardum J, Halambek J, Sander A, Zagajski Kučan K, Radojčić Redovniković I, Radošević K. Physicochemical properties, cytotoxicity, and antioxidative activity of natural deep eutectic solvents containing organic acid. Chem Biochem Eng Q. 2019; 33: 1–18. https://doi.org/10.15255/CABEQ.2018.1454

Troter DZ, Todorović ZB, Đokić–Stojanović DR, Đordević BS, Todorović VM, Konstantinović SS, Veljković VB. The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents. J Serbian Chem Soc. 2017; 82: 1039–1052. https://doi.org/10.2298/jsc170225065t

Ramón DJ, Guillena G. Deep Eutectic Solvents: Synthesis, Properties, and Applications, John Wiley & Sons; 2020; 1–21.

Siongco KR, Leron RB, Li M-H. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride-glycerol or -ethylene glycol deep eutectic solvents and their aqueous solutions. J Chem Thermodyn. 2013; 65: 65–72. https://doi.org/10.1016/j.jct.2013.05.041

Jibril B, Mjalli F, Naser J, Gano Z. New tetrapropylammonium bromide–based deep eutectic solvents: Synthesis and characterizations. J Mol Liq. 2014; 199: 462–469. https://doi.org/10.1016/j.molliq.2014.08.004

AlOmar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA. Glycerol–based deep eutectic solvents: Physical properties. J Mol Liq. 2016; 215: 98–103. https://doi.org/10.1016/j.molliq.2015.11.032

Lapeña D, Lomba L, Artal M, Lafuente C, Giner B. The NADES glyceline as a potential green Solvent: A comprehensive study of its thermophysical properties and effect of water inclusion. J Chem Thermodyn. 2019; 128: 164–172. https://doi.org/10.1016/j.jct.2018.07.031

Bahadori L, Chakrabarti MH, Mjalli FS, AlNashef IM, Manan NSA, Hashim MA. Physicochemical properties of ammonium–based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim Acta, 2013; 113: 205–211. https://doi.org/10.1016/j.electacta.2013.09.102

Troter DZ, Zlatković MZ, Đokić-Stojanović DR, Konstantinović SS, Todorović ZB. Citric acid-based deep eutectic solvents: Physical properties and their use as cosolvents in sulphuric acid-catalysed ethanolysis of oleic acid. Adv Technol. 2016; 5: 53–65. https://doi.org/10.5937/savteh1601053t

Glasser L. Thermodynamic estimation: Ionic materials. J Solid State Chem. 2013; 206: 139–144. https://doi.org/10.15744/2348-9812.1.e105

Haynes WM. CRC Handbook of chemistry and physics, A ready reference book of chemical and physical data, 94th ed., CRC Press, Taylor & Francis Group, Boca Raton, FL; 2013; pp. 12–21.

Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi YM, Al-Wahaibi T, Hashim MA. Glucose-based deep eutectic solvents: Physical properties. J Mol Liq. 2013; 178: 137. https://doi.org/10.1016/j.molliq.2012.11.025

Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th Expanded Edition, Cambridge University Press, United Kingdom; 1999; pp. 11–14.

Ghaedi H, Ayoub M, Sufian S, Shariff AM, Lal B, Wilfred CD. Density and refractive index measurements of transition-temperature mixture (deep eutectic analogues) based on potassium carbonate with dual hydrogen bond donors for CO2 capture. J Chem Thermodyn. 2018; 118: 147. https://doi.org/10.1016/j.jct.2017.11.008

Wu TY, Su S-G, Lin YC, Wang HP, Lin MW, Gung ST, Sun IW. Electrochemical and physicochemical properties of cyclic amine-based Brønsted acidic ionic liquids. Electrochim Acta. 2010; 56: 853–862. https://doi.org/10.1016/j.electacta.2010.09.084

Đorđević BS, Troter DZ, Veljković VB, Kijevčanin MLj, Radović IR, Todorović ZB. The physicochemical properties of the deep eutectic solvents with triethanolamine as a major component. J Serb Chem Soc. 2020; 85: 1303–1315. https://doi.org/10.2298/JSC200425050D

Esipovich A, Danov S, Belousov A, Rogozhin A. Improving methods of CaO transesterification activity. J Mol Catal A Chem. 2014; 395: 225–233. https://doi.org/10.1016/j.molcata.2014.08.011

Veličković AV, Avramović JM, Stamenković OS, Veljković VB. Kinetics of the sunflower oil ethanolysis using CaO as catalyst. Chem Ind Chem Eng Q. 2016; 22: 409–418. https://doi.org/10.2298/ciceq160106003v

Huang W, Tang S., Zhao H, Tian S. Activation of commercial CaO for biodiesel production from rapeseed oil using a novel deep eutectic solvent. Ind Eng Chem Res. 2013; 52: 11943–11947. https://doi.org/10.1021/ie401292w

Manurung R, Ramadhani DA, Maisarah S. One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production. AIP Conf. Proc. 2017; 1855: 070004. https://doi.org/10.1063/1.4985531

Manurung R, Winarta A, Taslim Indra L. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as cosolvent, IOP Conf. Ser.: Mater. Sci. Eng. 2017; 206: 012023. https://doi.org/10.1088/1757-899X/206/1/012023

di Bitonto L, Reynel-Avila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Duran-Valle CJ, Pastore C. Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production. Renew Energy. 2020; 160: 52–66. https://doi.org/10.1016/j.renene.2020.06.045

Chen X, Li Z, Chun Y, Yang F, Xu H, Wu X. Effect of the formation of diglycerides/monoglycerides on the kinetic curve in oil transesterification with methanol catalyzed by calcium oxide. ACS Omega. 2020; 5: 4646−4656. https://doi.org/10.1021/acsomega.9b04431

Ramos M, Dias A PS, Teodoro F. Soybean oil ethanolysis over Ca based catalyst. Statistical optimization of reaction conditions. React Kinet Mech Catal. 2020; 130: 433–445. https://doi.org/10.1007/s11144-020-01791-y

Sánchez-Cantú M, Reyes–Cruz FM, Rubio–Rosas E, Pérez–Díaz LM, Ramírez E, Valente JS. Direct synthesis of calcium diglyceroxide from hydrated lime and glycerol and its evaluation in the transesterification reaction. Fuel. 2014; 138: 126–133. https://doi.org/10.1016/j.fuel.2014.08.006

Kouzu M, Hidaka J, Wakabayashi K, Tsunomori M. Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Appl Catal A: Gen. 2010; 390: 11–18. https://doi.org/10.1016/j.apcata.2010.09.029

Rodriguez–Navarro C, Vettori I, Ruiz–Agudo E. Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: implications in heritage conservation using nanolimes. Langmuir. 2016; 32: 5183–5194. https://doi.org/10.1021/acs.langmuir.6b01065

Soares Dias AP, Ramos M, Catarino M, Puna J, Gomes J. Solvent assisted biodiesel production by co-processing beef tallow and soybean oil over calcium catalysts. Waste Biomass Valorization. 2019; 11: 6249–6259. https://doi.org/10.1007/s12649-019-00903-7

Similar Articles

You may also start an advanced similarity search for this article.