pH CONTROL IN SODIUM CHLORATE CELL FOR ENERGY EFFICIENCY USING PSO-FOPID CONTROLLER Scientific paper

Main Article Content

Sreepriya Sreekumar
https://orcid.org/0000-0002-0043-7355
Aparna Kallingal
Vinila Mundakkal Lakshmanan

Abstract

Industrial sodium chlorate production is a highly energy-intensive electrochemical process. If the pH of the chlorate cell is not controlled, the current efficiency drops from 99% to as low as 66.66%. Hence control of chlorate cell pH is very significant for energy-efficient sodium chlorate production. This study puts forward a fractional order PID controller for controlling the pH of the sodium chlorate cell. The tuning of FOPID controller variables is affected by employing particle swarm optimization. The highlight of the controller is that it is flexible, easy to deploy, and the time of computation is significantly low as few parameters are needed to be adjusted in PSO. The performance analysis of the suggested FOPID-PSO controller was studied and compared with the traditional PI controller and PID controller using time-domain provisions like settling time, rise time and peak overshoot and error indicators like integral square error (ISE), integral absolute error (IAE), and integral time absolute error (ITAE). FOPID controller employing PSO proved to perform well compared to conventional controllers with 0.5 s settling time and 0.1 s rise time. Thus, the FOPID-PSO controller has better setpoint tracking, which is essential for the process under consideration.

Article Details

How to Cite
Sreekumar, S., Kallingal, A., & Mundakkal Lakshmanan, V. (2022). pH CONTROL IN SODIUM CHLORATE CELL FOR ENERGY EFFICIENCY USING PSO-FOPID CONTROLLER: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 28(2), 127–134. https://doi.org/10.2298/CICEQ200911031S
Section
Articles

References

K. Viswanathan, J. Electrochem. Soc. 131 (1984) 1551.

B. Endrődi, S. Sandin, V. Smulders, N. Simic, M. Wildlock, G. Mul, B.T. Mei, A. Cornell, J. Clean. Prod. 182 (2018) 529–537.

G. Gordon, S. Tachlyashlki, Environ. Sci. Technol. 25 (1991) 468–474.

M.M. Jaksic, J. Electrochem. Soc. 121 (1974) 70–79.

Y.J. Jung, K.W. Baek, B.S. Oh, J.W. Kang, Water Res. 44 (2010) 5345–5355.

L.R. Czarnetzki, N. Eindhoven University of Technology, Eindhoven, Doctoral T (1989) 154.

L.R. Czarnetzki, L.J.J. Janssen, J. Appl. Electrochem. 22 (1992) 315–324.

S. V. Evdokimov, Russ. J. Electrochem. 37 (2001) 786–791.

J. Wulff, A. Cornell, J. Appl. Electrochem. 37 (2007) 181–186.

A. Tepljakov, B.B. Alagoz, C. Yeroglu, E. Gonzalez, S.H. HosseinNia, E. Petlenkov, IFAC-PapersOnLine 51 (2018) 25–30.

I. Podlubny, IEEE Trans. Automat. Contr. 44 (2002) 208–214.

B. Puchalski, T.A. Rutkowski, K. Duzinkiewicz, ISA Trans. (2020).

R. Rajesh, SN Appl. Sci. 1 (2019) 1–14.

L.H. Tong, Y.G. Li, H.Q. Zhu, W.T. Li, IOP Conf. Ser. Earth Environ. Sci. 427 (2020) 12–26.

M. Yaghi, M.O. Efe, IEEE Trans. Ind. Electron. 67 (2020) 4806–4814.

E. Anbarasu, M.V. Pandian S, A.R. Basha, Microprocess. Microsyst. 74 (2020) 103030.

N.M.H. Norsahperi, K.A. Danapalasingam, ISA Trans. 102 (2020) 230–244.

A. Sikander, P. Thakur, R.C. Bansal, S. Rajasekar, Comput. Electr. Eng. 70 (2018) 261–274.

F.A. Hasan, L.J. Rashad, Int. J. Power Electron. Drive Syst. 10 (2019) 1724–1733.

S.K. Swain, D. Sain, S.K. Mishra, S. Ghosh, AEUE - Int. J. Electron. Commun. 78 (2017) 141–156.

P. Roy, B.K. Roy, ISA Trans. 63 (2016) 365–376.

I. Shivakoti, G. Kibria, P.M. Pradhan, B. Bahadur, A. Sharma, Mater. Manuf. Process. 00 (2018) 1–10.

R. Ranganayakulu, G. Uday Bhaskar Babu, A. Seshagiri Rao, D.S. Patle, Resour. Technol. 2 (2016) S136–S152.

M.-K. Salehtavazoei, Mohammad, IET Control Theory Appl. 8 (2014) 319–329.

T. Binazadeh, M.H. Shafiei, Mechatronics 23 (2013) 888–892.

Y. Tang, X. Zhang, D. Zhang, G. Zhao, X. Guan, Neurocomputing 111 (2013) 122–130.

M.P. Aghababa, Soft Comput. 20 (2016) 4055–4067.

R. Sharma, K.P.S. Rana, V. Kumar, Expert Syst. Appl. 41 (2014) 4274–4289.

H. Delavari, R. Ghaderi, A. Ranjbar, S. Momani, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 963–978.

H. Delavari, R. Ghaderi, A. Ranjbar, S. Momani, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 963–978.

R. Pradhan, S.K. Majhi, J.K. Pradhan, B.B. Pati, Ain Shams Eng. J. 11 (2019) 281–291.

K. Bingi, R. Ibrahim, M.N. Karsiti, S.M. Hassan, Arab. J. Sci. Eng. 43 (2018) 2687–2701.

A. Djari, T. Bouden, A. Boulkroune, Int. Conf. Syst. Control 1 (2013) 1–6.

M.C. Heredia-Molinero, J. Sánchez-Prieto, J. V. Briongos, M.C. Palancar, J. Process Control 24 (2014) 1023–1037.

S. Tufenkci, 2018 Int. Conf. Artif. Intell. Data Process. (2018) 1–6.

S.K. Prince, K.P. Panda, V.N. Kumar, G. Panda, 2018 IEEMA Eng. Infin. Conf. ETechNxT 2018 (2018) 1–6.

M. Zamani, M. Karimi-ghartemani, N. Sadati, M. Parniani, Control Eng. Pract. 17 (2009) 1380–1387.

A. Kumar, V. Kumar, AEU - Int. J. Electron. Commun. 79 (2017) 219–233.

K. Viswanathan, B. V. Tilak, J. Electrochem. Soc. 131 (1984) 1551–1559.

R.K.B. Karlsson, A. Cornell, Chem. Rev. 116 (2016) 2982–3028.

L.C. Adam, G. Gordon, Inorg. Chem. 38 (1999) 1299–1304.

R. Eberhart, J. Kennedy, Proc. Int. Symp. Micro Mach. Hum. Sci. (1995) 39–43.

N. Nalini, G. Raghavendra Rao, Inf. Sci. (Ny). 177 (2007) 2553–2569.

L.T. Le, H. Nguyen, J. Dou, J. Zhou, Appl. Sci. 9 (2019) 1–23.

I. Pan, S. Das, ISA Trans. 62 (2016) 19–29.

S. Sreekumar, A. Kallingal, V. Mundakkal Lakshmanan, Chem. Eng. Commun. 208 (2021) 256–270.