TECHNO-ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF ETHYL ESTER BIODIESEL PRODUCTION
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ250525031AKeywords:
Biorefinery, Biodiesel production, Lipase Reuse, LCA, Economic Evaluation, Sensitivity AnalysisAbstract
Biodiesel is a key fuel for a zero-carbon future. Enzymatic synthesis using renewable materials can make it even more environmentally friendly. However, high enzyme costs and limited reuse hinder its economic feasibility. This study assessed the techno-economic and environmental performance of different processes for ethyl ester biodiesel production. The scenarios evaluated include: transesterification of soybean degummed oil using free and immobilized Eversa Transform 2.0, chemical alkaline catalysis of soybean oil, and transesterification of waste oil using ET. The main metrics were net present value and global warming potential. Results showed that the free enzyme outperformed the immobilized enzyme economically. However, chemical catalysis had an NPV nearly double that of the best free enzyme option. Sensitivity analysis revealed that enzyme cost and reuse rate were critical to net present value. Transesterification of waste oil with enzyme reuse had the lowest GWP (4.21 g CO2eq/MJ), making it the most environmentally favorable scenario. While life cycle assessment indicated lower global warming potential for enzymatic catalysis, further study is needed on emissions from enzymes. Depending on the enzyme and reuse rate, chemical catalysis might result in lower overall emissions. Integration with the biorefinery makes large-scale enzymatic biodiesel production economically viable and with low CO2eq emissions.
References
[1] R. IPCC, Climate Change, Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2023). https://doi.org/10.59327/IPCC/AR6-9789291691647. [accessed August 14, 2019].
[2] IEA, Transport Improving the sustainability of passenger and freight transport, https://www.iea.org/topics/transport. [accessed June 16, 2023].
[3] K.S. Mehra, V. Goel, Bio. Bioener. 199 (2025) 107910. https://doi.org/10.1016/j.biombioe.2025.107910.
[4] A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki, S. Mekhilef, Renew. Sust. Ener. Ver. 16 (2012) 2070–2093. https://doi.org/10.1016/j.rser.2012.01.003.
[5] S. Kaushik, V. Sati, N. Kanojia, K. S. Mehra, H. Malkani, H. Pant, H. Gupta, A. P. Singh, A. Kumar, A. Paul, R. Kumari, 'Adv. Mech. Eng. 1 (2021) 113–122. https://doi.org/10.1007/978-981-16-0942-8_10.
[6] T. Roitman, Programas internacionais de incentivo aos biocombustíveis e o renovabio autora(2019). https://periodicos.fgv.br/bc/article/download/87295/82108/191928 [accessed September 2, 2020].
[7] Brazil, LEI No 13.576, Dispõe sobre a Política Nacional de Biocombustíveis (RenovaBio) e dá outras providências, Brasília (2017). http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/lei/L13576.htm. [accessed August 1, 2019].
[8] M.I.S.F. Matsuura, M.T. Scachetti, M.F. Chagas, J.E.A. Seabra, M.M.R. Moreira, A.M. Bonomi, G. Bayma, J.F. Picoli, M.A.B. Morandi, N.P. Ramos, O. Cavalett, R.M.L. Novaes, Método e Ferramenta Para a Contabilidade Da Intensidade de Carbono de Biocombustíveis No Programa RenovaBio Método e Ferramenta Para a Contabilidade Da Intensidade de Carbono de Biocombustíveis No Programa RenovaBio, https://www.gov.br/anp/pt-br/assuntos/consultas-e-audiencias-publicas/consulta-audiencia-publica/2018/arquivos-consultas-e-audiencias-publicas-2018/cap-10-2018/cp10-2018_nota-tecnica-renova-calc.pdf. [accessed January 26, 2022]
[9] I.J. Stojković, O.S. Stamenković, D.S. Povrenović, V.B. Veljković, Renewable Sustainable Energy Rev. 32 (2014) 1–15. https://doi.org/10.1016/j.rser.2014.01.005.
[10] I.A.P. Fernandez, D.-H. Liu, J. Zhao, Resour., Conserv. Recycl. 119 (2017) 117–127. https://doi.org/10.1016/j.resconrec.2016.05.009.
[11] J.K. Raman, V.F.W. Ting, R. Pogaku, Biomass Bioenergy 35 (2011) 4221–4229. https://doi.org/10.1016/j.biombioe.2011.07.010.
[12] M.C. Santos de Mello, H.G.D. Villardi, A.F. Young, F.L.P. Pessoa, A.M. Salgado, Fuel 8 (2017) 329–336. https://doi.org/10.1016/j.fuel.2017.07.014.
[13] F.T.T. Cavalcante, F.S. Neto, I.R.A. Falcão, J.E.S. Souza, L.S.M.Junior, P.S. Sousa, T.G. Rocha, I.G. Sousa, P.H.L. Gomes, M.C.M. de Souza, J.C.S. Santos, Fuel 288 (2021). https://doi.org/10.1016/j.fuel.2020.119577.
[14] V.B. Veljković, I.B. Banković-Ilić, O.S. Stamenković, Renew. Sustain. Energy Rev. 49 (2015) 500–516. https://doi.org/10.1016/j.rser.2015.04.097.
[15] S.N. Gebremariam, J.M. Marchetti, Energy Convers. Manage. 171 (2018) 1712–1720. https://doi.org/10.1016/j.enconman.2018.06.105.
[16] S.K. Karmee, R.D. Patria, C.S.K. Lin, Int. J. Mol. Sci. 16 (2015) 4362–4371. https://doi.org/10.3390/ijms16034362.
[17] S.N. Gebremariam, T. Hvoslef-Eide, M.T. Terfa, J.M. Marchetti, Energies 12 (2019) 3916. https://doi.org/10.3390/en12203916.
[18] C. Bhatt, P.M. Nielsen, A. Rancke-Madsen, J.M. Woodley, Biotechnol. Appl. Biochem. 69 (2022) 7–19. https://doi.org/10.1002/bab.2074.
[19] J. Chapman, A.E. Ismail, C.Z. Dinu, Catalysts 8 (2018) 238. https://doi.org/10.3390/catal8060238.
[20] R. Fernandez-Lafuente, Molecules 22 (2017) 601. https://doi.org/10.3390/molecules22040601.
[21] S. Arana-Peña, Y. Lokha, R. Fernández-Lafuente, Catalysts 8 (2018) 511. https://doi.org/10.3390/catal8110511.
[22] F. Moazeni, Y.C. Chen, G. Zhang, J. Clean. Prod. 216 (2019) 117–128. https://doi.org/10.1016/j.jclepro.2019.01.126.
[23] A.C. Vieira, A.B.M. Cansian, J.R. Guimarães, A.M.S. Vieira, R. Fernandez-Lafuente, P.W. Tardioli, Catalysts 11 (2021) 496. https://doi.org/10.3390/catal8110496.
[24] T. Barreiros, A. Young, R. Cavalcante, E. Queiroz, Renew. Energy 159 (2020) 1066–1083. https://doi.org/10.1016/j.renene.2020.06.064.
[25] J.F.O. Granjo, B.P.M. Duarte, N.M.C. Oliveira, Energy 129 (2017) 273–291. https://doi.org/10.1016/j.energy.2017.03.167.
[26] R.P. Soares, A.R. Secchi, Comput.-Aided Chem. Eng. 14 (2003) 947–952. https://doi.org/10.1016/S1570-7946(03)80239-0.
[27] S.C. Miyoshi, A.R. Secchi, Processes 12 (2024) 1285. https://doi.org/10.3390/pr12071285.
[28] [28] L.P. Pinheiro, A.A. Longati, A.M. Elias, C.L. Perez, L.P. Pereira, T.C Zangirolami, F.F. Furlan, R.C. Giordano, T.S. Milessi, Fermentation 11 (2025) 116. https://doi.org/10.3390/fermentation11030116.
[29] E. Potrich, S.C. Miyoshi, P.F.S. Machado, F.F. Furlan, M.P.A. Ribeiro, P.W. Tardioli, R.L.C. Giordano, A.J.G. Cruz, R.C. Giordano, J. Clean. Prod. 244 (2020) 118660. https://doi.org/10.1016/j.jclepro.2019.118660.
[30] D.Y.C. Leung, X. Wu, M.K.H. Leung, Appl. Energy 87 (2010) 1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006.
[31] L.P. Miranda, J.R. Guimarães, R.C. Giordano, R. Fernandez-Lafuente, P.W. Tardioli, Catalysts 10 (2020) 817. https://doi.org/10.3390/catal10080817.
[32] T.A. Andrade, M. Errico, K.V. Christensen, Chem. Eng. Trans. 74 (2019) 769–774. https://doi.org/10.3303/CET1974129.
[33] [33] S. Sun, J. Guo, X. Chen, Ind. Crops Prod. 169 (2021) 113643. https://doi.org/10.1016/j.indcrop.2021.113643.
[34] D. Remonatto, C.M.T. Santin, D. De Oliveira, M. Di Luccio, J.V. De Oliveira, Ind. Biotechnol. 12 (2016) 254–262. https://doi.org/10.1089/ind.2016.0002.
[35] K. Palmer, M. Realff, Chem. Eng. Res. Des. 80 (2002) 773–782. https://doi.org/10.1205/026387602320776849.
[36] S.N. Lophaven, H.B. Nielsen, J. Søndergaard, DACE - A MATLAB Kriging Toolbox, Version 2.0 (2002). https://www.omicron.dk/dace/dace.pdf. [accessed on November 23, 2021]
[37] R.R. Carpio, F.F. Furlan, R.C. Giordano, A.R. Secchi, Comput. Chem. Eng. 119 (2018) 190–194. https://doi.org/10.1016/j.compchemeng.2018.09.009.
[38] A. Bhosekar, M. Ierapetritou, Comput. Chem. Eng. 108 (2018) 250–267. https://doi.org/10.1016/j.compchemeng.2017.09.017.
[39] M.H. Cheng, K.A. Rosentrater, Ind. Crops Prod. 108 (2017) 775–785. https://doi.org/10.1016/j.indcrop.2017.07.036.
[40] M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, 5ª ed., McGraw-Hill, 2003. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004.
[41] R. Davis, N. Grundl, L. Tao, M.J. Biddy, E.C.D. Tan, G.T. Beckham, D. Humbird, D.N. Thompson, M.S. Roni, Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Coproducts: 2018 Biochemical Design Case Update, NREL (2018). https://www.nrel.gov/docs/fy19osti/71949.pdf. [accessed November 9, 2022]
[42] R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes, 4ª ed., Prentice Hall, 2012. https://doi.org/10.5860/choice.36-0974.
[43] G. Towler, R. Sinnott, Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, 2ª ed., Elsevier, 2013. https://core.ac.uk/download/pdf/143491361.pdf.
[44] ISO 14040:2006/Amd 1:2020, Environmental management — Life cycle assessment — Principles and framework — Amendment 1, 2020.
[45] ISO 14044:2006/Amd 2:2020, Environmental management — Life cycle assessment — Requirements and guidelines — Amendment 2, 2020.
[46] IPCC, Climate Change 2007 – Synthesis Report, Intergovernmental Panel on Climate Change. (2007) https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf. [accessed January 16, 2023]
[47] G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, B. Weidema, Int. J. Life Cycle Assess. 21 (2016) 1218–1230. https://doi.org/10.1007/s11367-016-1087-8.
[48] G.J. McRae, J.W. Rlden, J.H. Seinfeld, Comput. Chem. Eng. 6 (1982) 15–22. https://doi.org/10.1016/0098-1354(82)80003-3.
[49] J. Goffart, M. Woloszyn, J. Build. Eng. 43 (2021) 103129. https://doi.org/10.1016/j.jobe.2021.103129.
[50] Comex Stat, General Data. http://comexstat.mdic.gov.br/pt/geral. [accessed August 26, 2024]
[51] Y. He, J. Li, S. Kodali, T. Balle, B. Chen, Z. Guo, Bioresour. Technol. 224 (2017) 445–456. https://doi.org/10.1016/j.biortech.2016.10.087.
[52] S.C. da Silva Filho, A.C. Miranda, T.A.F. Silva, F.A. Calarge, R.R. de Souza, J.C.C. Santana, E.B. Tambourgi, J. Clean. Prod. 183 (2018) 1034–1042. https://doi.org/10.1016/j.jclepro.2018.02.199.
[53] Abiove – Associação Brasileira das Indústrias de Óleos Vegetais. Estatísticas. https://abiove.org.br/estatisticas/. [accessed January 24, 2024]
[54] A.A. Rocha, Estadão, Brasil joga cerca de 1 bilhão de litros de óleo de cozinha no ralo a cada ano. https://economia.estadao.com.br/blogs/coluna-do-broad/brasil-joga-cerca-de-1-bilhao-de-litros-de-oleo-de-cozinha-no-ralo-a-cada-ano [accessed Novembre 7, 2024].
[55] ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Leilão de Biodiesel https://www.gov.br/anp. [accessed January 26, 2025]
[56] O. Cavalett, E. Ortega, J. Clean. Prod. 18 (2010) 55–70. https://doi.org/10.1016/j.jclepro.2009.09.008.
[57] PCC, Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change (2006). https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html. [accessed October 10, 2024]
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ediane S. Alves, Simone C. Miyoshi, Andrew M. Elias, Letícia P. Miranda, Paulo W. Tardioli, Roberto C. Giordano, Felipe F. Furlan

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 142095/2019-2 -
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers #2014/21252-0;#2016/10636-8;#2020/15450-5;#2022/10900-8 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001



