TECHNO-ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF ETHYL ESTER BIODIESEL PRODUCTION

Original scientific paper

Authors

  • Ediane S. Alves Chemical Engineering Program, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, Brazil https://orcid.org/0000-0002-2398-6226
  • Simone C. Miyoshi Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil and Faculty of Technology, FAT, State University of Rio de Janeiro, Rio de Janeiro, Brazil https://orcid.org/0000-0002-5192-230X
  • Andrew M. Elias Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, Brazil and SENAI Innovation Institute in Biodiversity and Circular Economy, Setor Bancário Norte (SBN), Brasília, Brazil https://orcid.org/0000-0001-6035-1118
  • Potrich Erich Department of Renewable Energy Technology (CEAD), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil and Graduate Program in Technology, Management and Sustainability (PPGTGS), Federal Institute of Education, Science and Technology of Goiás (IFG), Goiânia, Goiás, Brazil https://orcid.org/0000-0001-9449-7553
  • Letícia P. Miranda Department of Renewable Energy Technology (CEAD), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil https://orcid.org/0000-0001-7006-9159
  • Paulo W. Tardioli Chemical Engineering Program, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, Brazil. https://orcid.org/0000-0002-5011-9881
  • Roberto C. Giordano Chemical Engineering Program, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, Brazil. https://orcid.org/0000-0002-3755-9495
  • Felipe F. Furlan Chemical Engineering Program, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, Brazil https://orcid.org/0000-0002-0438-5257

DOI:

https://doi.org/10.2298/CICEQ250525031A

Keywords:

Biorefinery, Biodiesel production, Lipase Reuse, LCA, Economic Evaluation, Sensitivity Analysis

Abstract

Biodiesel is a key fuel for a zero-carbon future. Enzymatic synthesis using renewable materials can make it even more environmentally friendly. However, high enzyme costs and limited reuse hinder its economic feasibility. This study assessed the techno-economic and environmental performance of different processes for ethyl ester biodiesel production. The scenarios evaluated include: transesterification of soybean degummed oil using free and immobilized Eversa Transform 2.0, chemical alkaline catalysis of soybean oil, and transesterification of waste oil using ET. The main metrics were net present value and global warming potential. Results showed that the free enzyme outperformed the immobilized enzyme economically. However, chemical catalysis had an NPV nearly double that of the best free enzyme option. Sensitivity analysis revealed that enzyme cost and reuse rate were critical to net present value. Transesterification of waste oil with enzyme reuse had the lowest GWP (4.21 g CO2eq/MJ), making it the most environmentally favorable scenario. While life cycle assessment indicated lower global warming potential for enzymatic catalysis, further study is needed on emissions from enzymes. Depending on the enzyme and reuse rate, chemical catalysis might result in lower overall emissions. Integration with the biorefinery makes large-scale enzymatic biodiesel production economically viable and with low CO2eq emissions.

References

[1] R. IPCC, Climate Change, Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2023). https://doi.org/10.59327/IPCC/AR6-9789291691647. [accessed August 14, 2019].

[2] IEA, Transport Improving the sustainability of passenger and freight transport, https://www.iea.org/topics/transport. [accessed June 16, 2023].

[3] K.S. Mehra, V. Goel, Bio. Bioener. 199 (2025) 107910. https://doi.org/10.1016/j.biombioe.2025.107910.

[4] A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki, S. Mekhilef, Renew. Sust. Ener. Ver. 16 (2012) 2070–2093. https://doi.org/10.1016/j.rser.2012.01.003.

[5] S. Kaushik, V. Sati, N. Kanojia, K. S. Mehra, H. Malkani, H. Pant, H. Gupta, A. P. Singh, A. Kumar, A. Paul, R. Kumari, 'Adv. Mech. Eng. 1 (2021) 113–122. https://doi.org/10.1007/978-981-16-0942-8_10.

[6] T. Roitman, Programas internacionais de incentivo aos biocombustíveis e o renovabio autora(2019). https://periodicos.fgv.br/bc/article/download/87295/82108/191928 [accessed September 2, 2020].

[7] Brazil, LEI No 13.576, Dispõe sobre a Política Nacional de Biocombustíveis (RenovaBio) e dá outras providências, Brasília (2017). http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/lei/L13576.htm. [accessed August 1, 2019].

[8] M.I.S.F. Matsuura, M.T. Scachetti, M.F. Chagas, J.E.A. Seabra, M.M.R. Moreira, A.M. Bonomi, G. Bayma, J.F. Picoli, M.A.B. Morandi, N.P. Ramos, O. Cavalett, R.M.L. Novaes, Método e Ferramenta Para a Contabilidade Da Intensidade de Carbono de Biocombustíveis No Programa RenovaBio Método e Ferramenta Para a Contabilidade Da Intensidade de Carbono de Biocombustíveis No Programa RenovaBio, https://www.gov.br/anp/pt-br/assuntos/consultas-e-audiencias-publicas/consulta-audiencia-publica/2018/arquivos-consultas-e-audiencias-publicas-2018/cap-10-2018/cp10-2018_nota-tecnica-renova-calc.pdf. [accessed January 26, 2022]

[9] I.J. Stojković, O.S. Stamenković, D.S. Povrenović, V.B. Veljković, Renewable Sustainable Energy Rev. 32 (2014) 1–15. https://doi.org/10.1016/j.rser.2014.01.005.

[10] I.A.P. Fernandez, D.-H. Liu, J. Zhao, Resour., Conserv. Recycl. 119 (2017) 117–127. https://doi.org/10.1016/j.resconrec.2016.05.009.

[11] J.K. Raman, V.F.W. Ting, R. Pogaku, Biomass Bioenergy 35 (2011) 4221–4229. https://doi.org/10.1016/j.biombioe.2011.07.010.

[12] M.C. Santos de Mello, H.G.D. Villardi, A.F. Young, F.L.P. Pessoa, A.M. Salgado, Fuel 8 (2017) 329–336. https://doi.org/10.1016/j.fuel.2017.07.014.

[13] F.T.T. Cavalcante, F.S. Neto, I.R.A. Falcão, J.E.S. Souza, L.S.M.Junior, P.S. Sousa, T.G. Rocha, I.G. Sousa, P.H.L. Gomes, M.C.M. de Souza, J.C.S. Santos, Fuel 288 (2021). https://doi.org/10.1016/j.fuel.2020.119577.

[14] V.B. Veljković, I.B. Banković-Ilić, O.S. Stamenković, Renew. Sustain. Energy Rev. 49 (2015) 500–516. https://doi.org/10.1016/j.rser.2015.04.097.

[15] S.N. Gebremariam, J.M. Marchetti, Energy Convers. Manage. 171 (2018) 1712–1720. https://doi.org/10.1016/j.enconman.2018.06.105.

[16] S.K. Karmee, R.D. Patria, C.S.K. Lin, Int. J. Mol. Sci. 16 (2015) 4362–4371. https://doi.org/10.3390/ijms16034362.

[17] S.N. Gebremariam, T. Hvoslef-Eide, M.T. Terfa, J.M. Marchetti, Energies 12 (2019) 3916. https://doi.org/10.3390/en12203916.

[18] C. Bhatt, P.M. Nielsen, A. Rancke-Madsen, J.M. Woodley, Biotechnol. Appl. Biochem. 69 (2022) 7–19. https://doi.org/10.1002/bab.2074.

[19] J. Chapman, A.E. Ismail, C.Z. Dinu, Catalysts 8 (2018) 238. https://doi.org/10.3390/catal8060238.

[20] R. Fernandez-Lafuente, Molecules 22 (2017) 601. https://doi.org/10.3390/molecules22040601.

[21] S. Arana-Peña, Y. Lokha, R. Fernández-Lafuente, Catalysts 8 (2018) 511. https://doi.org/10.3390/catal8110511.

[22] F. Moazeni, Y.C. Chen, G. Zhang, J. Clean. Prod. 216 (2019) 117–128. https://doi.org/10.1016/j.jclepro.2019.01.126.

[23] A.C. Vieira, A.B.M. Cansian, J.R. Guimarães, A.M.S. Vieira, R. Fernandez-Lafuente, P.W. Tardioli, Catalysts 11 (2021) 496. https://doi.org/10.3390/catal8110496.

[24] T. Barreiros, A. Young, R. Cavalcante, E. Queiroz, Renew. Energy 159 (2020) 1066–1083. https://doi.org/10.1016/j.renene.2020.06.064.

[25] J.F.O. Granjo, B.P.M. Duarte, N.M.C. Oliveira, Energy 129 (2017) 273–291. https://doi.org/10.1016/j.energy.2017.03.167.

[26] R.P. Soares, A.R. Secchi, Comput.-Aided Chem. Eng. 14 (2003) 947–952. https://doi.org/10.1016/S1570-7946(03)80239-0.

[27] S.C. Miyoshi, A.R. Secchi, Processes 12 (2024) 1285. https://doi.org/10.3390/pr12071285.

[28] [28] L.P. Pinheiro, A.A. Longati, A.M. Elias, C.L. Perez, L.P. Pereira, T.C Zangirolami, F.F. Furlan, R.C. Giordano, T.S. Milessi, Fermentation 11 (2025) 116. https://doi.org/10.3390/fermentation11030116.

[29] E. Potrich, S.C. Miyoshi, P.F.S. Machado, F.F. Furlan, M.P.A. Ribeiro, P.W. Tardioli, R.L.C. Giordano, A.J.G. Cruz, R.C. Giordano, J. Clean. Prod. 244 (2020) 118660. https://doi.org/10.1016/j.jclepro.2019.118660.

[30] D.Y.C. Leung, X. Wu, M.K.H. Leung, Appl. Energy 87 (2010) 1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006.

[31] L.P. Miranda, J.R. Guimarães, R.C. Giordano, R. Fernandez-Lafuente, P.W. Tardioli, Catalysts 10 (2020) 817. https://doi.org/10.3390/catal10080817.

[32] T.A. Andrade, M. Errico, K.V. Christensen, Chem. Eng. Trans. 74 (2019) 769–774. https://doi.org/10.3303/CET1974129.

[33] [33] S. Sun, J. Guo, X. Chen, Ind. Crops Prod. 169 (2021) 113643. https://doi.org/10.1016/j.indcrop.2021.113643.

[34] D. Remonatto, C.M.T. Santin, D. De Oliveira, M. Di Luccio, J.V. De Oliveira, Ind. Biotechnol. 12 (2016) 254–262. https://doi.org/10.1089/ind.2016.0002.

[35] K. Palmer, M. Realff, Chem. Eng. Res. Des. 80 (2002) 773–782. https://doi.org/10.1205/026387602320776849.

[36] S.N. Lophaven, H.B. Nielsen, J. Søndergaard, DACE - A MATLAB Kriging Toolbox, Version 2.0 (2002). https://www.omicron.dk/dace/dace.pdf. [accessed on November 23, 2021]

[37] R.R. Carpio, F.F. Furlan, R.C. Giordano, A.R. Secchi, Comput. Chem. Eng. 119 (2018) 190–194. https://doi.org/10.1016/j.compchemeng.2018.09.009.

[38] A. Bhosekar, M. Ierapetritou, Comput. Chem. Eng. 108 (2018) 250–267. https://doi.org/10.1016/j.compchemeng.2017.09.017.

[39] M.H. Cheng, K.A. Rosentrater, Ind. Crops Prod. 108 (2017) 775–785. https://doi.org/10.1016/j.indcrop.2017.07.036.

[40] M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, 5ª ed., McGraw-Hill, 2003. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004.

[41] R. Davis, N. Grundl, L. Tao, M.J. Biddy, E.C.D. Tan, G.T. Beckham, D. Humbird, D.N. Thompson, M.S. Roni, Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Coproducts: 2018 Biochemical Design Case Update, NREL (2018). https://www.nrel.gov/docs/fy19osti/71949.pdf. [accessed November 9, 2022]

[42] R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes, 4ª ed., Prentice Hall, 2012. https://doi.org/10.5860/choice.36-0974.

[43] G. Towler, R. Sinnott, Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, 2ª ed., Elsevier, 2013. https://core.ac.uk/download/pdf/143491361.pdf.

[44] ISO 14040:2006/Amd 1:2020, Environmental management — Life cycle assessment — Principles and framework — Amendment 1, 2020.

[45] ISO 14044:2006/Amd 2:2020, Environmental management — Life cycle assessment — Requirements and guidelines — Amendment 2, 2020.

[46] IPCC, Climate Change 2007 – Synthesis Report, Intergovernmental Panel on Climate Change. (2007) https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf. [accessed January 16, 2023]

[47] G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, B. Weidema, Int. J. Life Cycle Assess. 21 (2016) 1218–1230. https://doi.org/10.1007/s11367-016-1087-8.

[48] G.J. McRae, J.W. Rlden, J.H. Seinfeld, Comput. Chem. Eng. 6 (1982) 15–22. https://doi.org/10.1016/0098-1354(82)80003-3.

[49] J. Goffart, M. Woloszyn, J. Build. Eng. 43 (2021) 103129. https://doi.org/10.1016/j.jobe.2021.103129.

[50] Comex Stat, General Data. http://comexstat.mdic.gov.br/pt/geral. [accessed August 26, 2024]

[51] Y. He, J. Li, S. Kodali, T. Balle, B. Chen, Z. Guo, Bioresour. Technol. 224 (2017) 445–456. https://doi.org/10.1016/j.biortech.2016.10.087.

[52] S.C. da Silva Filho, A.C. Miranda, T.A.F. Silva, F.A. Calarge, R.R. de Souza, J.C.C. Santana, E.B. Tambourgi, J. Clean. Prod. 183 (2018) 1034–1042. https://doi.org/10.1016/j.jclepro.2018.02.199.

[53] Abiove – Associação Brasileira das Indústrias de Óleos Vegetais. Estatísticas. https://abiove.org.br/estatisticas/. [accessed January 24, 2024]

[54] A.A. Rocha, Estadão, Brasil joga cerca de 1 bilhão de litros de óleo de cozinha no ralo a cada ano. https://economia.estadao.com.br/blogs/coluna-do-broad/brasil-joga-cerca-de-1-bilhao-de-litros-de-oleo-de-cozinha-no-ralo-a-cada-ano [accessed Novembre 7, 2024].

[55] ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Leilão de Biodiesel https://www.gov.br/anp. [accessed January 26, 2025]

[56] O. Cavalett, E. Ortega, J. Clean. Prod. 18 (2010) 55–70. https://doi.org/10.1016/j.jclepro.2009.09.008.

[57] PCC, Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change (2006). https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html. [accessed October 10, 2024]

Published

— Updated on 10.12.2025

Issue

Section

Article

How to Cite

TECHNO-ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF ETHYL ESTER BIODIESEL PRODUCTION: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250525031A

Funding data

Similar Articles

1-10 of 101

You may also start an advanced similarity search for this article.